Post #2000: A sidewalk, at $2000 per linear foot, in the Town of Vienna VA

 

Not a typo, unfortunately.   And, even more unfortunately, planned for my sleepy suburban street.

And not even “a” sidewalk.   For that paltry sum, we get two half-sidewalks, on opposite sides of the street.  That, together with a new mid-block crosswalk, is TOV government’s answer to the Town Council directive to “put a sidewalk” on my street.

I am going to take a couple of posts to tell the story of this, as I see it.

But, to cut to the chase, the punchline involves ~$2.5 million in free COVID money that the Town picked up.  Which has now become use-it-or-lose-it COVID money.

Which, I think, explains the Town’s decision to fire the money cannon at my street.   Mostly.  The terrain is also difficult in spots.

To cut to the final chase, I’m going to make the case that this is poor value.  And, that this is unsurprising, given that the process by which the Town is spending a free $2.5 million has little focus on value to the citizens.  I don’t believe the Town is deaf.  It may respond if you complain.  But that’s not the same as a value-focused planning process.

Anyway, this will be the story of how my Town is getting rid of $2.5M before it evaporates providing better pedestrian safety along Glen Ave SW.

It’s going to take a few posts to tell this.  This is not my idea of fun.

FWIW, my sole written comment to the engineer in charge of this is that he produce one sidewalk, on one side of the street or the other.

Part of this series of posts is to try to explain why I think he won’t or can’t do that.


First things first:  Could I literally pave this street with money, for that price?

Answer:  Sure.  In the sense of tiling the surface of the existing asphalt with U.S. currency.

A piece of U.S. paper currency covers about 16 square inches.  (Bills are a bit over 6″ x 2.5″).  Therefore $2.5M in $1 bills would cover (2,500,000 x 16 / 144 =~) 260,000 square feet.  The street in question is about 25 feet wide and maybe 1400 feet long, so it’s (25 * 1400 = ) 35,000 square feet.

For $2.5M I could pave (tile) my street with a 50/50 mix of $5 and $10 bills.

My point is not (just) to be a wise-ass, but to get a kind of gut-check on this.  There’s a lot of streets in Vienna that have nothing for sidewalks.  Town staff show an almost complete reluctance to spend local taxpayer money on sidewalks.    (Preferring to wait for grants, I guess, no matter how slow that process.)

My only point is that my gut tells me this is a lot of money to spend, for so little additional functionality to the citizens.   In a Town that is far from lavish about spending it’s own taxpayers’ money on sidewalks.

So I’m going to take a couple of posts-to-be to analyze the situation.  As I see it.  FWIW.

Post #1999: Power outages aren’t what they used to be.

 

A couple of days ago, we lost power for a few hours in the the aftermath of hurricane Debby, as it moved up the coast.  I took a walk during a break in the rain and found that a tree had split, bringing down some power lines a couple of blocks from my house.

Here are a few observations, sitting on my back porch, waiting for the power to come back on.


1:  It’s noisy around here when the power goes out.

Source:  Electricgeneratorsdirect.com

Used to be, power outages brought some quiet to the ‘burbs.  If nothing else, in the summer, all the AC compressors shut off.

But now, I can barely hear the wind in the trees over the droning of home emergency power generators in my neighborhood.  Instead of a bit of idyllic quiet, it suddenly sounds like I’m in the middle of a busy construction site.

All it lacks are the back-up beeps.

Unsurprisingly, these are all attached to the gi-normous McMansions that have sprung up in my neighborhood over the past decade.  (See my prior posts on the “tear-down boom” in Vienna VA.)  I’m guessing that about one-in-three of these new houses came with a permanently-installed natural-gas-fired generator.

The instant the power goes out, instead of quiet, you hear generators kicking in all over the neighborhood.   I can hear at least three, from my back porch.  Those turn on automatically, and won’t shut down until the power comes back on.  No chance they’ll run out of fuel, because these are connected to the natural gas supply.

It’s not as if my neighbors suddenly had some sort of preparedness mania.  They didn’t rush out and buy big home emergency generators in anticipation of the next snowpocalypse.  It’s that if you’re going to pay $2 mil for a house with all the extras (home theater room, sunken walk-in closets with windows, wine room, and so on), the $10K cost of an installed generator is rounding error.

So this is how power outages will sound in my neighborhood, for the rest of my life.  And as more small houses are torn down and replaced by as-large-as-the-law-allows McMansions, the density of emergency generating units is only going to go up from here.


2:  What is the sound of one reefer idling?

Now we get to the truly annoying part.

Near as I can tell, these new-fangled generators all seem to be old-school direct-drive units.  That is, an internal combustion engine (burning natural gas, in this case) is directly coupled to a generator creating alternating current (AC).

With that setup, the speed of the gas engine determines the Hertz (frequency) of the AC voltage.  The gas engine must therefore run at constant high speed to maintain 60 Hertz (cycles-per-second) AC.  That’s achieved by a governor that tightly regulates the speed of the engine.  At low electrical load, the engine runs just as fast and as loud as at high load, it just strains less to keep the generator spinning.

To a close approximation, these things are every bit as loud at idle — with no significant electrical load — as when they are putting out their maximum rated load.

The upshot is that each one is about as loud as a refrigerated truck.

So, instead of a bit of quiet, a power outage now means that my neighborhood sounds like a bunch of big diesel trucks are parked here,running at high idle.


3:  Where was I?  Ah yes, thrum-thrum-thrum.  Quiet emergency generators, explained.

So, as I sit on my back porch, enjoying the breeze and listening to the throb of my neighbor’s emergency generators,I figure I should explain the concept of “quiet” inverter-generators.

With an inverter-generator, the gas (or natural gas) engine turns a generator that generates DC electricity,  which feeds a piece of power electronics called an inverter, which then electronically generates the required 120 volt 60 hertz AC.

For that style of generator, there is no link between the speed of the gas engine and the frequency of the resulting AC (house) voltage.  This means that under light load, the internal combustion engine can slow down, and for any power demand, can be run at the speed/torque combination that most efficiently produces the required power output.

So inverter-generators are both more efficient, and on average quieter, than old-school direct-driver generators.  Though you will hear the engine speed change if there is a material change in the electrical load placed on the inverter.

Old-style direct-drive generator units are simpler to make than inverter-style generators.  But they are inherently less efficient, and, it seems, intrinsically louder, on average.  In any case, modern inverter-style generators have taken over the small-portable-generator market, specifically because they can be marketed as “quiet” generators.


4:  Direct-drive generators, inverter-generators, and three-legged-dog generators.

But my neighbor across the street, and one house up, seems to have purchased the worst possible kind of emergency generator.  It’s a maintenance-free natural gas generator that nevertheless runs like a three-legged dog.

The engine on that has kind of a ragged one-cylinder miss.  Which means that the engine speed and sound are constantly changing.  Which means the noise doesn’t fade into the background, but is constantly noticeable.  Particularly if you know anything about how an internal combustion engine is supposed to sound.

The result is an impossible-to-ignore loud thrumming noise, originating about 50 yards away.

Worse, while it sounds like it has a fouled spark plug, if I listed closely, a) the miss is a little bit too regular, and b) it seems to stop briefly from time to time.  I’m guessing this may be how the engine is supposed to run, and that it purposefully shuts down a cylinder under low load.  (I recall that GM tried such a strategy with some V8s, where fuel flow to half the cylinders could be cut off (e.g., when cruising at speed on the highway, where horsepower demand is low.)

So I think that not only am I being treated to the relentless thrumming of this generator for this outage.  I think that’s actually the way the thing is supposed to run.  So that I will be treated to this delightful noise every time the power goes out, from here on in.

I guess if I don’t like it, I can just hole up inside.

I may be without power for a while.

Maybe I need a my own whole-house generator.  That way, I can sit inside, in the AC, during a power outage, like all my neighbors.


4:  Quieter emergency power?  Hybrid-or-EV-plus-inverter, and USB-tethered Wifi hotspot.

For my emergency power source, I keep a 1 KW inverter on the shelf of my garage.  Hook that up to the 12V battery of a Prius, turn the car on and leave it, and run a heavy-duty extension cord from car to house.  The car will start and run the gas engine occasionally, to keep the battery up.  The only sound it makes is the occasional few-minute stretch with the Prius idling.

If the power isn’t back on in a couple of hours, I can set that up so that up so I can run the fridge.  In the meantime, I got around the loss of my FIOS internet by attaching my phone to my laptop, and using my phone as a Wifi hotspot.


5:  Aside:  Of magnetos and bike speedos.

Source:  Amazon.

Weirdly enough, I just installed a generator of sorts the day before this storm.

Old-school direct-driver backup generators are alternators.  That is, they directly convert mechanical motion into alternating current.

New-style inverter-generators are generators.  That is, they convert mechanical motion into direct current.  Which is then converted to alternating current by an inverter.  (Well, technically, a generator is anything that generates electricity, AC or DC.  But if it generates DC, you have to call it a generator, not an alternator.)

And then there are magnetos, something most have only heard about in the context of piston-engine-driven aircraft.  A magneto generates pulses of electricity used to fire the spark plugs of the engine.  It does this by passing a rotating magnet near a densely-wound coil of wire.  A common example is a typical gas lawn mower, where a magnet embedded in the flywheel creates the spark for the spark plug is it whips past a coil mounted a hair’s-breadth away from the flywheel.

And, oddly enough, an old-fashioned wired bike speedometer uses a magnet on the spokes, and a coil of wire on the front fork, to generate pulses of electricity in time with the turning of the wheel, which it then translates to speed.  Not exactly a magneto, but definitely in the magneto family tree somewhere.


6:  Final aside:  Just say no to GPS

Finally, apropos of nothing, bike speedometers are yet another area where the tech changed when I wasn’t looking.  And, in so doing, converted bike speedometers to just another class of disposable electronic devices.

Old-school wired bike speedometers work as described above.  They are, in effect, little magnetos, counting the rate at which a magnet on your spokes creates a tiny little electrical signal as it passes a fixed coil of wire.  In addition to wired bike speedometers, there are old-school wireless ones where the magneto signal is sent via radio waves.  Near as I can tell, these have all the drawbacks of wired ones, and none of the advantages.

But, because these are both old technologies, typical units come with easily-replaced standard button-cell batteries.  Buy a good one — I am partial to the Sigma brand — and they’ll last for decades.  Just change the battery every few years.

And then there’s GPS bike speedometers.  The latest thing.

In theory, this is a step up from magneto-based bike speedos, because there’s no need for any cables.  The speedometer captures a GPS signal, so it knows your location, and can infer your speed.  All for about the same $30 cost as a name-brand wired bike speedometer.

OTOH, owning one of those means that your bicycle now makes a permanent, downloadable record of exactly where you rode your bike, and when.  Presumably, this appeals to people who don’t mind all the involuntary electronic surveillance we already undergo.

But I simply didn’t want to buy yet another device that tracks me.  So, despite the ease of installation (no cables), I took a pass on a GPS-based bike speedometer.

If you immediately got to that punchline as soon as you saw “GPS”, then you get an A.

But, in addition, if you also inferred that these all inexpensive GPS-based bike speedometers have non-replaceable batteries, change that to an A+

And so, as with so much modern small electronics, these devices are disposables.  They come with an embedded USB-rechargeable lithium-ion battery.  When (not if) the battery reaches the end of its life, your sole option is to chuck your old one in the trash, and buy a new one.

Worse, there is clearly no engineering reason for this.  The previous generation of bike speedometers all had replaceable batteries.

It’s just that times changed.  User-replaceable batteries on cheap electronics had already become a thing of the past by the time low-cost bike GPS speedometers came on the market.  And so, if you want a cheap GPS-based bike speedometer, your sole option is to buy a disposable one.  Though, of course, none of them are labeled that way.

Which is how I ended up installing a little magneto-based wired bike computer on my wife’s bike.  It keeps no record of where I’ve biked.  And when the battery wears out, I can replace it.


Conclusion

When one house in a neighborhood has an automatic backup power generator, that’s an oddity.

When every third house has one, it’s cacophony.  As soon as the power goes out, the neighborhood is full of the sound of many loud, small, internal combustion engines, each powering an old-school direct-drive alternator.

I hadn’t realized how bad it had gotten in my neighborhood until I tried catching some breezes on my back porch, during this most recent power outage.  A power outage now makes my neighborhood sound like an overnight truck-stop parking area.

With any luck, maybe this is just a phase these houses are going through.  These days, you can buy a power wall or similar large home storage battery, which then serves as your backup power source.   So that maybe the next wave of oversized McMansions will come with quiet emergency power.

But for now, as small older houses in my area are steadily torn down and replaced by McMansions — where the built-in emergency generator seems to be a popular option at the moment — it’s only going to get louder.

Post #1993: Reflections on renewing my driver’s license.

 

My trip to the DMV was a pleasure. 

I never thought I’d say that.  Not in my lifetime.  Not unironically.

But, truly, it could not have been easier.  I had to renew my license in person, if for no other reason than to have my vision tested.  I made an appointment on-line, followed the instructions, and the DMV worked like a well-oiled yet seemingly-people-friendly machine. 

Total time at the DMV?  Seventeen minutes, car-door-to-car-door.

Not like it was in the good (?) old days, that’s for sure.  But the VA DMV has been on a roll for decades now, in terms of streamlining service delivery and doing as much business as possible over the internet rather than in person.

The DMV even threw in the upgrade to RealID.  For a slightly higher fee.    Hate the concept.  Took them up on the offer anyway.

This is not to say that I am a pushover when it comes to upselling.  I declined the RealID subcutaneous RFID implant, even though the additional fee was quite modest.  Maybe I’ll go for that when I get my passport renewed.

In any case, I still see well enough to drive.  I’m still able to bumble my way through a DMV visit.

Guess that makes this a good day.  I should enjoy the now.

My next mandatory license renewal is in 2032.  Logically, I recognize that number as a year that will occur eight years from now.  But it otherwise lacks reality to me.  Might as well be forever and a day.

Post #1979: Catching up with a few things.

 

Day trips:  Great Falls, Maryland and Sky Meadows, VA.

Sky Meadows is one of our under-appreciated Virginia State Parks.  The main hike at Sky Meadows (above) is a seemingly-easy half-mile walk up a hillside meadow with nice views.  It’s only a half-mile to the top, but that’s at a constant 18% grade. 

We (pant) took many (pant) pauses to (pant) admire the view.  On a clear day (e.g., without forest fire smoke), you can see the tall buildings at Reston, VA, roughly 50 miles away.


Roses are red, boysenberries are purple.

My little patch of berries is doing well.  Black raspberries have peaked.  Blackberries (above) are doing OK.  Currants and gooseberries are about done.  Wineberries are still to come.

My boysenberries are now ripening.  Three years ago I put in a few boysenberry plants.  I did this for the novelty, as I can’t recall ever having seen boysenberries for sale in this area (Virginia).  Now, having grown some, I understand why.  Technically, they are cane fruits.  In some climates, they may in fact produce stout canes.  But in my yard, they are low, creeping, sprawling plants.  They are hard to grow, in that it’s all-but-impossible to weed around them.  They’re a pain to pick, as the berries are borne just a few inches off the ground.

A ripe boysenberry looks like a purple blackberry, as shown above.   When less than totally and fully ripe, boysenberries and blackberries taste about the same to me.  But fully ripe, each berry yields a few seconds of its own distinct flavor.  Boysenberries are different from blackberries, but I would not say that a fully-ripe boysenberry is better than a fully-ripe blackberry.  And blackberries are vastly easier to grow, in my climate.

In both cases, once the fruit is fully ripe, it’s very soft and won’t travel.  Near as I can tell, the only way to taste a fully-ripe blackberry is to grow it.  And around here, the only way to taste a fresh boysenberry, at all, is to grow it.


Bike rehab success.

I must have made the right choices in rehabbing my wife’s BikeE recumbent bike (Post #1978 and earlier).  This, because she was gadding about town, on that bike, for a couple of hours today.  There’s the bike, on the W&OD trail this morning.

My sole useful advice was to mind her coccyx, in the sense that a long bike ride on a recumbent can leave you with a sore butt, particularly if you haven’t done any riding in a while.

This bike rehab project remains unfinished.  I managed to get the bike into ride-able condition, but I have been unable to get the three-speed rear hub and other bearings serviced.  My local bike shop took on the task, then declined to work on the bike due to a damaged shock mount.  (Apparently my 15-year-old repair of that mount left them unimpressed.)

This is the problem with riding what is, in effect, an antique.  I need to find another bike shop in my area that can rebuild a Sachs 3×7 rear hub.  That’s a bit of a trick, given that every part for those has been out of production for a couple of decades.


Poor garlic yield

This year marks my fourth attempt at growing garlic in my back yard garden.  This year I bought seed garlic (i.e., big heads with big cloves) from a local grower, made sure the soil had adequate nutrients including sulfur, and generally I Did What They Told Me To Do.  Including planting after our nominal first frost date in the fall.

Once again, my dreams of growing garlic heads the size of my fist are unrealized.  In fact, this is shaping up to be my fourth failure at growing garlic.  As with my prior attempts, my heads of garlic are tiny.  About half of my garlic is still in the ground, but it’s clear that most or all of my garlic heads will be on order of 1.5″ diameter or so.  Almost but not quite unusable.

At this point, I’ve tried using different garlic varieties, planting times, backyard locations, and soil amendments and fertilizers.  But I always get the same result.

I suspect that I just don’t have enough sunlight to grow full-sized garlic.  My garlic bed gets about 5 hours of direct sunlight a day.  Growing guides variously recommend “at least six hours”, and in some cases, eight-to-ten hours of direct sunlight per day.  Garlic doesn’t have a whole lot of leaf area, and as a consequence, I’m guessing it really needs more direct sunlight than is available in my back yard.


Plant propagation:  Snip-and-dip success, air layering fail.

Seven weeks ago, I started to propagate some schip (skip) laurels by two methods:  Air-layering, and snip-and-dip (Post #1967).

The snip-and-dip plants are thriving, as shown above.  Seven weeks ago, these were green branch tips that I snipped off, dipped in rooting hormone, stuck in wet potting soil, then kept moist and out of direct sunlight.  These cuttings are obviously thriving.

Air layering skip laurels, by contrast, has been a total dud (above).  The internet told me I’d have a big ball of roots at the end of that cutting after just four weeks.  After four weeks, I had nothing.  After seven weeks, there are some little bumps on the bark that might, eventually, become roots.  My guess is that for a schip (skip) laurel, I’d have to tend to that air-layered branch all summer to have any hope of having a root ball form.  Snip-and-dip is a lot easier and in this case a lot more effective.


Sketchy no more.

The scene on the left is a particularly sketchy bit of sidewalk in my neighborhood, as of March 2024 (Post #1950).  The scene on the right is the same stretch of sidewalk, now.  Presumably, in the interim, the Town of Vienna Department of Public Works has been at work.

That was good to see, given that the Town, in Its infinite wisdom, has decided to tear up my street next year.  This, due to free money from Covid. 

The plan is to bury the roadside swales that have been there for half a century, widen the street, and almost manage to convert it into just another cookie-cutter suburban street.  The point of which is to provide “a sidewalk” on my street.  In this case, for reasons only apparent to DPW, the sidewalk will cross the street mid-block.  Thus, when they are done, anyone wishing to walk down my block, on the sidewalk, will be required to cross the street in front of my house.

My bet is that nobody is going to use the sidewalk beyond that ridiculous crossing.  Other than the geezers in the 100+ bed assisted living facility that the town permitted at the end of the block.

Which, although nobody will admit it, is why this one-block-long sidewalk has to cross the street mid-block.  Because it’s not for residents on the block to use, it’s for benefit of the commercial establishment at the end of the block.  (The sidewalk crosses the street in order to attach to the sidewalk directly adjacent to the assisted living facility).

But hey, if somebody else is paying for it, and you are in a use-it-or-lose-it situation, the more money it wastes, the better.

Anyway, kudos to the Town for putting the this particularly run-down bit of local sidewalk back into good repair.

I am not looking forward to next year’s makeover of my street.  But the Town owns the right-of-way, and they can do pretty much whatever they damn well please with it.  Which, apparently, is pretty much the Town’s view of the issue, as well.


Cultivating my first deadly toxic plant.

To the casual observer, that looks like a bunch of un-ripe cherry tomatoes.  Those are actually potato fruit, what you get if you allow your potatoes to flower.  These are quite toxic due to their high solanine content.

 

 

Post #1959: Town of Vienna, slowdown in the tear-down boom?

 

This post is a brief note about something I stumbled across, in the Town of Vienna 2024-25 proposed budget, while doing my homework for the just-prior post.

Hmm.  With the notable exception of a few chunks of row houses built on formerly commercial property, this essentially refers to tear-downs.  That is, the practice of buying small houses, tearing them down, the putting up the largest house that can legally be built on the resulting lot.

So I wonder if this might be a real slowdown in Vienna’s tear-down boom.  If so, it’s been a long time coming (Post #1617).  But it just might be a consequence of a general slowdown in home sales. Continue reading Post #1959: Town of Vienna, slowdown in the tear-down boom?

Post #1958: Town of Vienna “Notice of Proposed Real Property Tax Increase”.

 

This is a followup to Post #1955.

As is our tradition here in the Town of Vienna, the Town once again screwed up the math on the legally-required Notice informing its citizens of the average increase in real estate tax bills for the coming fiscal year.

As a result, the Town says average real estate tax bills are rising just 3.3 percent.  The correct figure is 6.2 percent, based on the data provided by the Town.

And — shown below — calculating that ain’t exactly rocket science.  (Hint:  Assessments went up 6.2 percent, and the proposed tax rate didn’t change, so … )

Continue reading Post #1958: Town of Vienna “Notice of Proposed Real Property Tax Increase”.

Post #1896: On re-using political yard signs: Composting shed, part 1.

 

Today is the day when a whole lot of campaign signs go straight into the dumpster.  Along with the political aspirations of half the recent candidates,

Which is a pity, really.  (The signs, I mean.)  The best of those signs are made to last a long time.  We really ought to do better than treating them as a single-use disposable.

So I suggest that the first Wednesday following the first Monday in November be declared Campaign Sign Recycling Day.  In keeping with that, today is a good day for me to make something useful out of some dead political yard signs.

This post is the theory.  Next post is the actual assembly.


We’re talking Coroplast.

Source:  Coroplast, Inc.

Campaign yard signs come in several varieties.

Cheap campaign yard signs aren’t re-usable in any obvious way.  Some are coated cardboard, on some sort of stick.  Some are a printed plastic sleeve that fits over a three-sided wire frame.  For both of those, the metal frames (if any) can be recycled.  But the signs themselves aren’t good for much.  Far as I can tell, once they’ve served their purpose, they’re trash.

By contrast, high-end campaign yard signs are Coroplast(r).  That is, corrugated plastic sheets — two sheets of plastic bound together with thin plastic channels.  As pictured above.  Effectively, they are built like corrugated cardboard, but plastic.

These sheets — typically made from polypropylene — have a surprising amount of structural integrity.  Much like corrugated cardboard, they are quite resistant to bending or folding across the corrugations.  This means you could  use a single thickness of Coroplast to build light-duty objects, and multiple thicknesses to build heavy duty objects.

These also stand up well to being used outside.  The ones forming the sides of my oldest raised beds now have more than five years of cumulative outdoor exposure (first as yard signs, then as raised bed sides.)  Only this year did they begin to show brittleness from all that sunshine and weather.  (And if I’d cared to keep them painted, I probably could have avoided that, as most of the damage is from exposure to the UV in sunlight.)


Fastenating

I’d say that the biggest downside is that these can’t be glued together.  (Or, at least, not well, or not easily, using conventional glues).  The underlying material (typically, polypropylene) just doesn’t stick to much.  And the ink coating — the printed message — further complicates things.

Near as I can tell, most people who make DIY projects with Coroplast sheet opt for some sort of mechanical fastening.  That can be as simple as cutting slots and tabs, so that sheets fit together.  Than can include melting sheets together, in places, to form a sort of plastic rivet.  Or can include using actual metal fasteners (bolts, washers, nuts) to hold the plastic parts together.  Or staple or nail them into a wood backing.

(The big exception being model airplane enthusiasts, for whom gluing coroplast is the only practical option.  That said, after having read one or two sites discussing that use, I’m convinced that gluing up Coroplast is not something that you’re likely to get right the first time.)

There are chemical methods that might, in theory, hold these sheets together.  Some are specialized glues specifically designed for this sort of application.  All of those appear to cost an arm and a leg, at least for the quantities that would be needed to build (e.g.) a piece of furniture.  And then there’s solvent-welding the polypropylene (PP).  That is, finding a solvent that will dissolve PP, dissolving some pieces of PP in that solvent, and then using that as if it were glue.  I strongly suspect that either approach — specialized glue, or DIY solvent-welding — requires a nice clean PP surface, involving a lot of complicated surface preparation, and that the ink firmly bonded to the typical campaign sign would interfere with that.

Dare I say this?  Even duct tape is iffy.  The same factors that make it hard for glue to stick, make it hard for tapes to stick.  And surface preparation for taping is not easy (e.g., lightly torching the PP surface).  All told, taping or gluing this stuff seems like a lot of work, on the off chance that you can get something to stick firmly.

The upshot is that I’m going with mechanical fastening only.


Never in small amounts

I find most plans for upcycling or recycling of materials to be of little value.  Most involve using small amounts of materials.  Most involve creating something for which there is a very limited demand.  The results tend to be more of a novelty than a way to divert significant amounts of material from the landfill.

Contrast that with using campaign signs for the sides of raised garden beds.  That used up a lot of material, slowed down the inevitable progress toward the landfill by years, and avoided consuming considerable amounts of virgin materials.

In this case, I have a stack of roughly 35 campaign yard signs, or about 100 square feet of Coroplast sheet.  Pre-cut into neat 2′ x 1.5′ pieces.  So I’m looking for a project that will use up just about that amount of material, and give me something useful in return.


Revisiting cardboard furniture

Source:  Google search

In Post #887, I did up a quick summary of the various construction methods used to create corrugated cardboard furniture.  I’d guess that just about anything you could build as corrugated cardboard furniture could also be built out of Coroplast.

So if you are stuck for ideas, you can look up cardboard furniture plans.  As long as they don’t depend critically on glue, they ought to work with Coroplast.

As I see it, the main approaches to creating weight-bearing structures for cardboard furniture are:

Simple stacked sheets.

Source:  Homedit.com

Folded beams

Source:  Time, inc.

Structural grids (with or without surfacing materials):

Source:  Planet Paper


Totes

Source:  Storage Techniques for Art, Science, and History

It seems worth mentioning that a lot of lightweight commercial bins and totes are made from folded and fastened sheets of Coroplast.  It’s such a common use that there’s even a market for used Coroplast bins and totes.

You can find lots of different plans on the internet for constructing Coroplast totes, bins, boxes, and so on.  They all boil down to folding a sheet into a box shape, and then somehow fastening it together at the corners.  In the example pictured above, the author constructs a sort of “rivet” out of hot glue, and uses that to fasten the corners mechanically (reference).

Here, I’m shooting for something larger, to use up more Coroplast signs.


From dead campaign signs to structural integrated panels.

Source:  Builder Bill

I’m going to turn my pile of used Coroplast into some structural integrated panels or SIPs.  In this case, the SIPs will be flat, rectangular wooden frames, faced with coroplast sheets, and filled with … probably scraps of insulating foam board.

Like a hollow-core door, if you’ve ever dealt with the insides of one of those.  The entire frame around the rim is solid wood, and so has enough strength to hold fasteners and hinges.  But the broad flat surfaces are just thin, rigid sheets backed by some hollow, honeycomb-like structure.

As long as those rigid face sheets stay firmly in place, the entire unit ends up being quite strong, given the light weight.  Far more than you might reasonably expect.  This is why (e.g.) you can easily use a hollow-core door as a table-top, even though the individual face veneers are far too flimsy for that use.

I think this takes good advantage of the strengths and weaknesses of Coroplast.  And it allows me to connect the Coroplast to the structure using a (hardware) staple gun, which is about as fast and as lazy as it gets.  But all the connections subject to high point loads — the sort of connector that would pull out of a thin plastic sheet — can be made through the solid wood edges.

And it’s generic.  I’m going to use this to build a little knock-down insulated shed for my composter.  But nothing would stop you from (e.g.) building furniture this way.  Bookshelves.  A larger shed.  A lightweight travel trailer.  Anything that can be made from rigid flat panels can be made this way, within the strength limitations of the materials.

 


From structural integrated panels to winter composter cover.

At this point, putting the composter cover together is just a matter of connecting the panels made in just above.

Ideally, I’d like to have “knock down” construction — something that can be easily disassembled and re-assembled without tools.  (That way, I can store it away easily during the off-season).  But in the end, this is only going to take four long screws to hold it together.  So I’m just going to screw it together.

How this actually goes together is going to depend on what scraps of lumber I build it out of.


Conclusion

In this post, I figured out how I’m going to use up a lot of 1.5′ x 2′ Coroplast campaign signs.  My proposed method is to build a bunch of “structural panels” out of those signs.  That is, thin wood frames faced front and back with Coroplast sheets.  And then use those rigid panels to build a structure.

This approach:

  • Uses up a lot of signs.
  • Doesn’t require gluing the Coroplast sheets to anything
  • Uses (hardware) staples as the main fastener
  • Avoids putting high point loads on the plastic sheets themselves, by placing all the “structural” fasteners into wood.
  • Is flexible — just make the panels different sizes.

All I have to do now is to make that happen.

I’m now going to test that, by building a winter cover for my composter, using that “structural panel” method.  Assuming all goes well, the construction of that should be documented in my next post.