Post #1979: Catching up with a few things.

 

Day trips:  Great Falls, Maryland and Sky Meadows, VA.

Sky Meadows is one of our under-appreciated Virginia State Parks.  The main hike at Sky Meadows (above) is a seemingly-easy half-mile walk up a hillside meadow with nice views.  It’s only a half-mile to the top, but that’s at a constant 18% grade. 

We (pant) took many (pant) pauses to (pant) admire the view.  On a clear day (e.g., without forest fire smoke), you can see the tall buildings at Reston, VA, roughly 50 miles away.


Roses are red, boysenberries are purple.

My little patch of berries is doing well.  Black raspberries have peaked.  Blackberries (above) are doing OK.  Currants and gooseberries are about done.  Wineberries are still to come.

My boysenberries are now ripening.  Three years ago I put in a few boysenberry plants.  I did this for the novelty, as I can’t recall ever having seen boysenberries for sale in this area (Virginia).  Now, having grown some, I understand why.  Technically, they are cane fruits.  In some climates, they may in fact produce stout canes.  But in my yard, they are low, creeping, sprawling plants.  They are hard to grow, in that it’s all-but-impossible to weed around them.  They’re a pain to pick, as the berries are borne just a few inches off the ground.

A ripe boysenberry looks like a purple blackberry, as shown above.   When less than totally and fully ripe, boysenberries and blackberries taste about the same to me.  But fully ripe, each berry yields a few seconds of its own distinct flavor.  Boysenberries are different from blackberries, but I would not say that a fully-ripe boysenberry is better than a fully-ripe blackberry.  And blackberries are vastly easier to grow, in my climate.

In both cases, once the fruit is fully ripe, it’s very soft and won’t travel.  Near as I can tell, the only way to taste a fully-ripe blackberry is to grow it.  And around here, the only way to taste a fresh boysenberry, at all, is to grow it.


Bike rehab success.

I must have made the right choices in rehabbing my wife’s BikeE recumbent bike (Post #1978 and earlier).  This, because she was gadding about town, on that bike, for a couple of hours today.  There’s the bike, on the W&OD trail this morning.

My sole useful advice was to mind her coccyx, in the sense that a long bike ride on a recumbent can leave you with a sore butt, particularly if you haven’t done any riding in a while.

This bike rehab project remains unfinished.  I managed to get the bike into ride-able condition, but I have been unable to get the three-speed rear hub and other bearings serviced.  My local bike shop took on the task, then declined to work on the bike due to a damaged shock mount.  (Apparently my 15-year-old repair of that mount left them unimpressed.)

This is the problem with riding what is, in effect, an antique.  I need to find another bike shop in my area that can rebuild a Sachs 3×7 rear hub.  That’s a bit of a trick, given that every part for those has been out of production for a couple of decades.


Poor garlic yield

This year marks my fourth attempt at growing garlic in my back yard garden.  This year I bought seed garlic (i.e., big heads with big cloves) from a local grower, made sure the soil had adequate nutrients including sulfur, and generally I Did What They Told Me To Do.  Including planting after our nominal first frost date in the fall.

Once again, my dreams of growing garlic heads the size of my fist are unrealized.  In fact, this is shaping up to be my fourth failure at growing garlic.  As with my prior attempts, my heads of garlic are tiny.  About half of my garlic is still in the ground, but it’s clear that most or all of my garlic heads will be on order of 1.5″ diameter or so.  Almost but not quite unusable.

At this point, I’ve tried using different garlic varieties, planting times, backyard locations, and soil amendments and fertilizers.  But I always get the same result.

I suspect that I just don’t have enough sunlight to grow full-sized garlic.  My garlic bed gets about 5 hours of direct sunlight a day.  Growing guides variously recommend “at least six hours”, and in some cases, eight-to-ten hours of direct sunlight per day.  Garlic doesn’t have a whole lot of leaf area, and as a consequence, I’m guessing it really needs more direct sunlight than is available in my back yard.


Plant propagation:  Snip-and-dip success, air layering fail.

Seven weeks ago, I started to propagate some schip (skip) laurels by two methods:  Air-layering, and snip-and-dip (Post #1967).

The snip-and-dip plants are thriving, as shown above.  Seven weeks ago, these were green branch tips that I snipped off, dipped in rooting hormone, stuck in wet potting soil, then kept moist and out of direct sunlight.  These cuttings are obviously thriving.

Air layering skip laurels, by contrast, has been a total dud (above).  The internet told me I’d have a big ball of roots at the end of that cutting after just four weeks.  After four weeks, I had nothing.  After seven weeks, there are some little bumps on the bark that might, eventually, become roots.  My guess is that for a schip (skip) laurel, I’d have to tend to that air-layered branch all summer to have any hope of having a root ball form.  Snip-and-dip is a lot easier and in this case a lot more effective.


Sketchy no more.

The scene on the left is a particularly sketchy bit of sidewalk in my neighborhood, as of March 2024 (Post #1950).  The scene on the right is the same stretch of sidewalk, now.  Presumably, in the interim, the Town of Vienna Department of Public Works has been at work.

That was good to see, given that the Town, in Its infinite wisdom, has decided to tear up my street next year.  This, due to free money from Covid. 

The plan is to bury the roadside swales that have been there for half a century, widen the street, and almost manage to convert it into just another cookie-cutter suburban street.  The point of which is to provide “a sidewalk” on my street.  In this case, for reasons only apparent to DPW, the sidewalk will cross the street mid-block.  Thus, when they are done, anyone wishing to walk down my block, on the sidewalk, will be required to cross the street in front of my house.

My bet is that nobody is going to use the sidewalk beyond that ridiculous crossing.  Other than the geezers in the 100+ bed assisted living facility that the town permitted at the end of the block.

Which, although nobody will admit it, is why this one-block-long sidewalk has to cross the street mid-block.  Because it’s not for residents on the block to use, it’s for benefit of the commercial establishment at the end of the block.  (The sidewalk crosses the street in order to attach to the sidewalk directly adjacent to the assisted living facility).

But hey, if somebody else is paying for it, and you are in a use-it-or-lose-it situation, the more money it wastes, the better.

Anyway, kudos to the Town for putting the this particularly run-down bit of local sidewalk back into good repair.

I am not looking forward to next year’s makeover of my street.  But the Town owns the right-of-way, and they can do pretty much whatever they damn well please with it.  Which, apparently, is pretty much the Town’s view of the issue, as well.


Cultivating my first deadly toxic plant.

To the casual observer, that looks like a bunch of un-ripe cherry tomatoes.  Those are actually potato fruit, what you get if you allow your potatoes to flower.  These are quite toxic due to their high solanine content.

 

 

Post #1978: Bike E Rehab, part 2

In which I construct a pannier rack for the back of the bike.  Only after which did I find out that this bike is dead.  Or maybe not.


Rear pannier mount for the BikeE

My wife and I own two BikeE’s.  These are semi-recumbent bikes that were popular (ish) about 25 years ago.

As part of this rehab process (Post #1976), I removed the wire baskets from both bikes, along with their under-seat mounts.  They never worked well.  And after a couple of decades, the rust adds nothing to their charm.

To replace those, on my BikeE, I mounted a far easier-to-use (and better-looking) set of cloth panniers across the tail of the bike frame.  As shown above.  (The product can be seen at this link, from Amazon.)

I bought a similar set for my wife’s BikeE.  Sort of a get-out-of-rehab present.  (Her bike is currently at the bike shop, for an overhaul of the 3-speed rear hub and other items.)

To hang those new cloth panniers on her bike, I need a rear rack.  Which basically no longer exists, for the BikeE.  Unobtainium, or close enough to it.

So I made one, like so:

This BikeE rear rack slides onto the aluminum-extrusion frame, behind the seat, to form a 6″ x 13″ shelf.  Tightening the bolts clamps it firmly to the frame.  (For those in-the-know, I may yet have to drill a clearance hole or two for the seat-limit rivet that’s part of the frame.)

This serves as the mount for the cloth panniers.  The panniers attach to this rear rack via Velcro straps fed through the polished metal strap-eyes screwed to the corners.

To keep the panniers off the rear wheel, I wove a 48″ bungee cord (green, above) between the rear arm of the bike and the rack.  This forms an elastic “V” on both sides.  The panniers rest against, and Velcro to, this “V”, instead of rubbing the rear tire.  In addition, the panniers themselves have a stiff back, as if from a thin sheet of plywood, which helps to keep them from the back tire.

Panniers in this position can’t stably hold as much weight as panniers mounted under the front seat.  But rear-mounted panniers on this bike are adequate for (e.g.) a bag of groceries.  And that’s about all I intend to use them for.

Here’s the rack, mounted and strung with a bungee.  And then in final form, with the panniers installed.

Addendum:  Preferred bungee routing shown below left, in torquoise.  In hindsight, the bungee is more effective at keeping the panniers away from the rear wheel when it is routed as shown below.  Just drill a couple of holes in the main plate to stick the metal bungee ends into, and pass the middle of the bungee around the front of the plastic rack.

(As a reminder, in the picture below, a shock absorber allows the gray swing arm and tire to move up-and-down relative to the blue frame/white rack.  That’s why any connection between the two must be flexible, and is among the many reasons why a normal bike rear rack will not work in this situation.)

Details of construction:  I made mine out of a 1/2″ thick piece of HDPE board, only because I had that sitting around.  It’s more-or-less a half-inch thick plastic cutting board.  Plywood would probably have been lighter. 

The top board is 6″ x  13″, sized to match the particular panniers I bought, plus an inch of length for mounting the strap eyes to either end of the board. 

Beneath that to board are two “rails”, each consisting of a “clamp” and a “spacer”.  The larger piece that clamps onto the bike is 1.5″ wide, and is the full 1/2″ thickness of the material I’m using.  The smaller “spacer” piece is about 3/4″ wide, and has been thinned down to about 5/16″ thickness, so that it is exactly as thick as the lip on the aluminum bike frame.   To keep them together, the spacer has been screwed to the clamp piece in a couple of places.

To assemble, mark lines on the top that are 1.25″ away from the center of the bicycle.  Drill them out to accept your hardware (1/4-20 bolts, in my case).  Put the bolts through the top, and place that on top of the bike frame by straddling the frame with those bolts.  Center the plastic top on the bike frame and clamp it down so that it can’t move.

Remove the bolts, hold one rail under the top, tight against the aluminum frame, and clamp that rail assembly to the bike rack top.  Then drill down through the empty bolt holes, into the immobilized rail assembly.  Run the bolts through top and rail on that side, loosely put on the nuts.  Do the same for the other side.

Tighten the bolts/nuts until the bike rack is clamped firmly to the aluminum bike frame.  For final assembly, it’s probably not a bad idea to use lockwashers, Locktite, doubling up the nuts, or similar, to keep the nuts from backing off the bolts.

It works, in the sense that I clamped it to my bike frame, and I couldn’t budge it.  I’m sure it’ll be adequate to handle the stress of 20 pounds of groceries in the panniers.

Not shown:  Cut a couple of slots in the end so you can route the bungee cord efficiently, as discussed above.  Any connection between the frame and the rear swing arm has to be flexible, because the swing arm/shock move relative to the frame, as the bike goes over bumps.  Hence the bungee cord.


I would put the cart before the horse, but the horse is dead.

The irony here is that about 30 minutes after I finished the above, I got an email from my local bike shop.  Said email telling me that the bike is dead.   My wife’s BikeE has a crack in the frame, where the suspension is attached.  And because of that, my local bike shop will not do any repairs on this bike.

And yet, there has been a crack in that location for a couple of decades or so.  The metal of the shock mount failed after just a few years.  When BikeE wouldn’t do anything about it, I made my own repair with a piece of angle iron and a U-bolt.  And continued to use the bike.  This repair transmits the stress from the shock to the frame, effectively bypassing the shock mounting.

The upshot is that tomorrow, I need to clarify what the reality of the putative death of my wife’s BikeE is.

Are we talking about the failure that occurred 20 years ago,  and the fix that has held up in the interim?  Or is this some new failure that I did not notice, despite turning the bike every-which-way as I (e.g.) changed tires and brakes, and lubed cables?

Is the bike unsafe for use, in the opinion of the repair guy? 

Or is this just a liability issue, same as you hear from car repair operations on YouTube.  Simply as a matter of corporate policy, do they not work on bikes with frame damage, for fear that something will go wrong down the road, and they would be held liable.

That’s one of those questions that I’m not sure I can get a straight answer to.  If the shop is afraid of the liability of working on a bike with frame damage, then they aren’t going to take on the liability of telling me the bike is OK to use.  So I’m not sure it’s even worth asking.

Oddly, if I’d stuck to the original plan, none of this would have come up.  At first, the plan was just to bring them the rear wheel for rebuild.  (In which case, this issue would never have arisen, because they’d never see the bike frame.)  I wonder if they’ll still rebuild the wheel/hub if I ask them to, as long as I take the rear wheel off the offending frame myself?

 


Conclusion:  The second greatest waste of time in the U.S.A. …

… is doing something really well, that doesn’t need to be done at all.

In effect, I may have just made that fancy new saddle for a dead horse.

Or maybe not.  If the issue is the decades-old damage, I think we’ll keep using the bike.  If the issue is something new, then I’m not sure what happens next.

Addendum, the next day:  It’s only temporary, unless it works.  The bike mechanic did, indeed, point to the nearly-20-year-old shock mount failure as the reason the bike was un-rideable.  He either missed (or dismissed) my 20-year-old expedient repair, using a U-bolt and a chunk of angle iron to transfer force from the bottom of the shock to the frame, effectively bypassing the shock mount.  Near as I can tell, a U-bolt of that size should have a breaking load somewhere around a ton, and so is adequate to support a rider.  

In any case, my temporary repair held up through years of riding, and nothing about it has changed.  I guess I proceed by going elsewhere to get the rear hub rebuilt.  

Post #1976: Bike E Rehab

As best my wife can recall, the last time she used that bike, my young daughter rode on the back.

Said daughter is turning 24 this year.

So it’s been sitting quite a while, unused, on our screen porch.

But with a little cleanup, new rubber all around, brake pads, a little WD-40, and chucking the moldy backpacks and rusty baskets, voilà:

Not bad for a bicycle that’s more than a quarter-century old.

Still funky after all these years.


While we’re at it.

The four most expensive words in repairs.

I knew that all the rubber items on the bike had to be replaced, just to get it back on the road.

Only after I got that done did all the other problems begin to surface. Problems that I’m going to have my local bike shop (Bikes@Vienna) fix.

Why don’t I fix the rest of the problems myself?  Here’s my answer:

Source:  BikeE riders’ group on Facebook.

Among the maintenance this bike needs is to have the three-speed axle pictured above taken apart, cleaned, lubed.  And then, most importantly, not merely put back together, but put back together correctly. 

I’m not up for rebuilding that.  Among other things, that particular three-speed rear hub is more-or-less a priceless family heirloom.  The manufacturer stopped making those hubs about 20 years ago.  New parts have been unavailable for a decade and a half now.  And it’s the only hub that will work with this bicycle without significant modification to the bike’s current setup.


This bike is so old …

that it predates e-bikes, that is, bikes powered by electricity.  Which makes the brand name — BikeE — a real handicap when it comes to looking for parts on the internet.  But circa 1998 or so, when this was sold, a) internet use by the general public was just a few years old, and b) nobody could possibly have guessed that they would ever make batteries energy-dense enough to be used to power bicycles.  Let alone cars.

…  that it came with an incandescent bike headlight powered by “C” cells.  Among the stuff that got packed away with the bike was a (then) top-of-the-line CatEye bike headlight.  Back in the day, they dealt with the inefficiency of incandescent light bulbs by using big batteries.  I can’t recall the last device I bought that used anything but AA or AAA (or even smaller) cells.

… that the company that made it went bankrupt more than 20 years ago.  Once upon a time, BikeE was the largest U.S. seller of recumbent bikes (per this reference).  But they went out of business abruptly in 2002, after some product recalls.

And yet, this bike remains a good design.  The big advantage of this bike is comfort.  It’s a semi-recumbent bike.  Sitting on it is about like sitting in a well-padded office chair.  Your butt is further cushioned by an air-shock suspension.  It is about as easy on your body as bicycling gets.

And most of the wear-and-tear parts remain available.   One of the joys of working on bicycles, as opposed to appliances, is that most of the parts are standardized and still available.  Everything on the bike frame was made to be replaced.  And everything can be replaced by anyone with an average aptitude for mechanical repairs, and a few simple hand tools.


Conclusion

My wife and I have owned a pair of BikeEs for a quarter-century now.

They seemed expensive at the time, but in hindsight, they were a good investment.  Cheaper than a heart attack, for sure.  I’ve used mine regularly, barring injuries, and it’s really the only consistent source of exercise I’ve had for the past quarter-century.

My wife’s BikeE, by contrast, got mothballed somewhere around 15 years ago.  Now she has decided to start riding again, and bringing that elderly bike back to road-worthy condition wasn’t that hard at all.

Now all I have to do is (have my bike shop) catch up on 25 year’s worth of deferred maintenance.

Post #1960: The U.S. is resolving the chaos in the EV charging market. Slowly.

 

This post started off as planning for a road trip from Vienna VA to a town in rural upstate New York.  The catch being that I planned to take my Chevy Bolt EV.

If you look at the map above, it seems like it should be easy.  There appear to be EV charging stations all over my planned route.  But the more I looked at the details, the less I understood.  And the more I realized that most of those chargers pictured above are useless to me. Continue reading Post #1960: The U.S. is resolving the chaos in the EV charging market. Slowly.

Post #1951: Replacing the battery in a cheap cylindrical dashcam.

 

 

This post walks through the process of replacing the “non-replaceable” battery inside a cheap cylindrical dashcam, like the one pictured above.

It’s not hard to do.  I did two identical cameras.  The second one took about 20 minutes.  Both repairs were successful.

You don’t even have to read this post to figure it out.  You can get the gist of the steps by scrolling through the pictures below.

If I learned anything from this, it’s that if I ever buy another dashcam, I’m going to be sure it’s the type that uses a capacitor instead of a battery.

Continue reading Post #1951: Replacing the battery in a cheap cylindrical dashcam.

Post #1944: Chevy Bolt one-month review

 

  • I bought a used car.
  • And to gas, au revoir.
  • This is favored, by far,
  • By the energy czar.
  • If the range is sub-par?
  • Well, I don’t travel far.
  • Not to Ulannbataar, or far-off Zanzibar,
  • Just my local bazaar.

[Thumpity-thump.]

  • So it’s no blazing star,
  • No de-luxe Ja-gu-ar.
  • I don’t know it from NASCAR
  • Or races stock-car.
  • So it’s not caviar
  • With a Cuban cigar.
  • It is more Hershey-bar.
  • Middle-class avatar.
  • But I set a low bar.
  • Been no glitches so far.
  • And it isn’t bizarre.
  • Like some daft minicar.

[Thumpity-thump.]

  • In mood most noire?
  • Yearn for God’s abattoir?
  • Then grab hold of the busbar.
  • Forsake CPR.
  • But for now, NPR
  • And some padding lumbar
  • Will together debar
  • Good Saint Pete, registrar.

In prose

Bought a 2020 Chevy Bolt about a month ago.  Just over 5K miles on it.  Just under $19K with taxes and tags, should end up under $15K after the tax rebate.

It’s the best used car I’ve ever bought.  But — trust me on this — that isn’t saying much.

Good:

  • About 5 miles per kilowatt-hour, as driven.  Much better than EPA, and almost on a par with my wife’s 2021 Prius Prime.
  • Low C02.  Where I live (and charge), driving 150 miles in this car produces about the same amount of C02 as burning one gallon of gasoline.  I have years, paying back the C02 that went into making all those batteries.  But in terms of operating C02 emissions, that’s quite low.
  • Comfortable:  Lot of front leg room, driver position is much higher off the ground than a Prius, which makes this easy to get into and out of, and gives good visibility (for a car, that is).  The driver’s seat fits my frame (6′) well.
  • Zippy.  Very zippy when you need to zip.  Lots of acceleration off-the-line.
  • Plugs right into the wall.  Level I (120-volt) charging works just fine.  An overnight charge at 12 amps adds maybe 75 miles of range.
  • Surprisingly nice sound system.  I have what I’m pretty sure is the stock radio, and the sound quality is very good.

The neutral:

  • Came with just one fob.  That’s really an issue with buying it used.  But, it was surprisingly easy to buy and in-the-car program some new fobs.
  • No spare or jack.  But, it was easy enough to locate and buy a jack and spare that should work with this car.
  • All told, a couple-hundred bucks fixed both issues.

The not-so-good:

  • Bumpy ride.  Short wheelbase and tight suspension give it a jittery ride.  I probably wouldn’t notice it but my own suspension isn’t all that tight, so I tend to jiggle more than I like, as I drive.
  • Have to pay attention.  This car has tight, responsive steering and a somewhat wide turning circle, both of which were a surprise, given how small the car is bumper-to-bumper.  (This is a foot-and-a-half shorter than my wife’s 2021 Prius Prime, but has a wider turning radius.)  Both of these mean that you can’t just rest a couple of fingers on the steering wheel, and cruise down the road.  You actually have to grab the wheel and steer the car.

Summary

All my life, when faced with a major energy-using investment, I’ve opted for the most efficient thing I could reasonably get.  And, so far, I’ve never been sorry I did that.

This car fits that pattern.  As long as it doesn’t fail prematurely, I am more than satisfied with it.  It’s all the car I need and it’s about as C02-efficient as a car will likely ever be in my lifetime.

I don’t think I’m going to look back, a few years from now, and say “oops”.  For a used car, that’s about all I can ask for.

Plus, I can now sneer at all those old-fashioned hybrid cars on the road.

Post #1936: What if this is as good as it gets?

 

Source:  Data are from U.S. DOE, Sources: U.S. Energy Information Administration, Form EIA-860, Annual Electric Generator Report. U.S. Energy Information Administration, Form EIA-861, Annual Electric Power Industry Report. U.S. Energy Information Administration, Form EIA-923, Power Plant Operations Report and predecessor forms.

When technology produces big leaps in energy efficiency, it’s pretty easy to make meaningful reductions in your carbon footprint.  Just buy newer stuff.

But as a long-term observer of this issue, it seems to me that technology-driven gains in energy efficiency are hitting their limits.  There are a lot of important areas — cars, fridges, lighting, and even electrical generation itself — where any further reductions in carbon footprint look a lot more difficult.

What I’m trying to say is, looks like technology has already grabbed the low-hanging fruit.

I’m not going to belabor the societal implications of this.  For me, this means that once I’m driving an EV and living in a house with an efficient heat pump and LED lights, there are no more easy reductions in my household carbon emissions.  Nor are there likely to be, for the foreseeable future.  Lifestyle changes, yes.  Effortless reductions in emissions, no.

Maybe this is as good as it gets.

Continue reading Post #1936: What if this is as good as it gets?

Post #1934: No spare tire? When did this happen?

 

You buy into new tech, you expect certain aspects of your life to change.

Buy a Chevy Bolt, and part of the deal is that you stop saying “gas pedal” for the accelerator.  Likewise, “step on the gas” is no longer a valid request.

I guess I should have seen it coming.  But I now wonder how long it will be before the phrase “spare tire” goes the way of “cigarette lighter socket”.


Flat tire?  Use OnStar

The Chevy Bolt provides absolutely nothing for dealing with a flat tire.  It has taken me a while to get my mind around why they did that.  And no, I don’t think it’s just to sell OnStar services.

Era 1:  Ancient history, the true spare tire.

Standard equipment:  Full-service tire and rim, jack, lug wrench.

Back in the day, cars came with five functional rims, and five full-sized tires.  One of those was the spare tire. If you had a flat you could drive on your spare more-or-less indefinitely.  Because your spare was a real tire.

In most cases, you could use any of the five tires/rims, on front or back, or either side of the car.  This, despite whatever folklore you may have absorbed.  This, per the standard method for “rotating the tires”, according to the experts at Bridgestone tires, among others.  (Directional tires — those that have a forward direction of rotation — are the exception.)

Source:  tirerack.com

Era 2:  The limited-service, compact, or doughnut spare

Standard equipment:  Limited-service tire and rim, jack, lug wrench.

Sometime in the 1980s, car makers began to replace the full-sized spare with a “compact spare”.  This was an era when cars were shrinking, gas mileage was at a premium, and competition from foreign manufacturers was intense.  Credit for the first compact spare apparently goes to Volkswagen (reference).

Initially the compact spare was the mark of the econo-box, but eventually it became the norm.

Today, there are still plenty of cars that come with a full-sized spare tire standard, but these tend to run to be cars meant to have an “off road” look, as well as some top-end sedans.  If you buy your typical mid-size middle-of-the-road vehicle, chances are pretty good it comes with a compact spare.

To be honest, as tires got better over the years, and cars got smaller, I found that the full-sized spare was more of a nuisance than a comfort.  Improvements in manufacturing made tire sidewall “blowouts” a thing of the past.  Steel-belted radials made it far harder to get a flat by picking up a nail in the tread.  And, in general, tires just became a whole lot more reliable.  And the full-sized spare ended up just taking up space.

My wife’s 2005 Prius came with a doughnut spare.  We sneered at the time, but a) we used it several times so far, b) it works fine for getting the car to the tire shop, and c) little did we know what was coming up next.

Era 3:  Tire pump, Fix-a-Flat, and a prayer

Standard equipment:  Tire puncture repair kit.

My wife’s 2021 Prius Prime came with no spare at all.  Instead, Toyota provides a “tire puncture repair kit” which, as far as I can tell, consists of some tire sealant in a pressurized can, an electric air pump, and directions for use.

Prayer is optional but recommended.  And as I am a non-religious person, I tossed in an actual tire plugging kit as backup.

This is now the standard on all Prius models.  You don’t even get a doughnut spare,  In effect, you get a can of Fix-a-Flat, an electric tire pump that fits that can, and roughly 35-step directions for use.  I don’t think we even got a lug wrench or a jack, so there’s literally no way for us to take the tire off the car, unless we buy those tools separately. Edit:  Nope, Toyota hid them in an odd spot.  So, oddly, the car does come with jack and lug wrench, but no spare tire of any sort.  That’s a mixed message, for sure.

(For those unfamiliar with the product, Fix-a-Flat (r) is this pressurized goo that you can squirt into a flat tire, and, if all goes well, and you follow directions, it’ll seal the leak in the tire.  At least long enough for you to get to a service station.)

Era 4:  The Chevy Bolt:  Self-sealing tires and real-time tire pressure monitoring.

Standard equipment:  Nada.

The Chevy Bolt takes this to a new low, or new high, depending on your point of view.  Like the Prius Prime, the Chevy Bolt gives you no way to remove a wheel from the car.  No jack, no tire iron. But in addition, they give you no way to fix a flat, period.

Instead, the car comes with “self-sealing tires”.  Bicyclists familiar with the product “Slime” will grasp the concept.  In effect, they have pre-installed Fix-a-Flat, with the idea being that the goo already inside the tires it should seal holes up to about an eighth of an inch.  It also lets you see the tire pressures in real time, which I think would be handy if you’re trying to get a car with a low tire to a service station.

That’s the theory, anyway.  Plus, you are encouraged to subscribe to OnStar.  (I still haven’t figured out how to shut up the OnStar lady upon startup, so I just keep the volume on the radio turned off.)

I have of course put a 12 volt tire pump in the trunk of the Bolt.  Because, in my experience, “self-sealing” tires are more like slower-leaking tires.  It just takes them longer to go flat than if there were no sealant inside the tire.  So I do want to carry some way to inflate the tire.

But I’m thinking long and hard about buying a jack and lug wrench for it.  Not only is the Bolt a relative dense car — short wheelbase, but weighs more than two tons — it has some weird, non-standard jack points.  And Chevy is pretty cagey about just where, exactly, those jack points are, and what will fit.

Crazy as it sounds, to an old guy, Chevy engineers really don’t want the owners to jack up the car, to remove a tire.  And for once, I might just go along with the plan.

In any case, for this car, at least, I think I understand the lack of doughnut spare.  It’s a small, very heavy car.  (As a result, it has a stiff and sometimes uncomfortable suspension, to take all that weight.)  There wouldn’t be a lot of wheel travel with a doughnut spare.  And I think you’d put your battery down too close to the road to be comfortable.

So, on a Prius, if you hit a pothole with the doughnut spare, you might ding a little sheet metal.  With a Bolt, you’ve got some great big battery modules there on the underside of the car.  And I suspect Chevy was a little hesitant to put just a doughnut spare between those and the road surface.


Conclusion

Having had cars with a full-sized spare, a doughnut spare, and no spare, I think the doughnut spare hits the global optimum.  You really only need something that will give you a few miles of travel, a few times in the life of the car.  Just enough to get you home, or to a tire-repair shop.  Dedicating a full-sized tire and rim to that task is wasteful, and overkill.

But no spare?  I’m not too keen on that.  With the Prius Prime, there really is no place to put a doughnut spare.  So I guess I’ll accept Toyota’s puncture repair kit as a necessary evil.  On the Bolt, I can see why Chevy’s engineers might have wanted to avoid a doughnut spare, owing to a very dense, small car with critical components located in the floor of the vehicle.   I’m still not sure why they’ve gone so far out of their way to make it difficult for the Bolt owner to remove a wheel.

In either case — the Prime or the Bolt — I can definitely imagine a situation where I’d want to take the wheel off the car, to get a tire repaired.  That’s a lot less stress on the vehicle than towing the car, just to get a nail puncture repaired.  And right now, that’s not possible, given what the manufacturer supplies with the car.  Not sure what I’m going to do about it.

But this seems to be the trend.  Just as my kids thought I was kidding when I called the 12V power outlet under the dash the “cigarette lighter socket”, someday, when an old guy refers to somebody’s fat gut as a spare tire, none of the younger people are going to have the faintest idea what he’s talking about.

Addendum:  Notes to self on adding donut spares.

Upon further research, nope, no way I can be comfortable driving a care without a spare tire.  Not when I can remedy the situation for a modest expense.

For the 2021 Prius Prime:  The car actually does have a jack, just stowed in an odd place (in a compartment under the back seat).  By report, the tire puncture repair kit is to be used only as a last resort, as using it will kill the tire pressure sensor and require that to be replaced.  By report, the same donut spare fits all regular Prius models from 2004 to 2022.  But the 2017 and later models use a larger, 17″ rim, compared to the earlier models with a 16″ rim.  Experts say you’re better off getting the proper donut for the vehicle.  The Prime still has no place to put a compact spare, and several drivers report tucking it behind a front seat for long trips.  But all we need to do is pick up a donut spare from a junkyard, for any standard Prius model in that range of years,.

For the 2020 Bolt, I’ve already ordered a Chevy S10 jack, from a model year that has the right “button” top jack plate to fit the jack points on the Bolt.  Rumor has it that a Chevy Cruze (2010-2019, excluding diesels!) donut spare will fit the Bolt, with its odd 5/105 bolt pattern.  (The Cruze diesel had slightly larger wheels with a 5/115 bolt pattern).  Everyone says that, owing to the radically smaller diameter of the compact spare (compared to the normal wheel and tire), the compact spare should not be used to replace the front tires (but instead, tires should be shuffled as needed so that a compact spare is used on the rear, in the event of a flat).  The Bolt actually has a wheel well designed to hold a compact spare, but Chevy blocked off part of it, and a spare will only fit completely if stored deflated. 

The upshot is that we’re shopping our local junkyards and/or Ebay for his-‘n’-hers used donut spares, so that when we have a flat, we have some option other than getting towed.

Addendum to Addendum:  I bought some donuts.

Last night I bought what I hope are the relevant donut spare tires off Ebay, having already Ebay’ed a jack/lug wrench for a Chevy S10, to fit the Bolt.  This was more expensive than scrounging the junkyards, but far less expensive than buying a generic boutique “spare nouveu” off Amazon.

The deciding factors in going with the internet were age and fit.  I wanted tires in good shape, because tires degrade over time.  (I didn’t want to buy a donut and immediately have to replace the tire.)  And for the Prius, the rim fit was fairly important.  I only wanted a donut from the latest Prius models, not earlier ones, which means fewer wrecks in the junkyard.

Really, it was like anything else — these days, you get a better selection off the internet than you do in person.  You just pay for it.  When all was said and done, I figured I had a better chance of success picking among 20 or 30 current offerings for each donut on Ebay, than I did driving out to my nearest you-pick junkyard and managing to find exactly what I was after.

On balance, it’s probably a little bit wasteful to carry around that donut spare, when both manufacturers say you don’t need it.  Mostly.  But in the end, I realized the internal inconsistency of stocking a car with disaster preparedness supplies (Post #1628), and then not having any functioning spare.  So I spent a bit of money to fix that.

Case closed.