Post #1989: What fraction of U.S. gasoline consumption is for lawn mowing?

 

I should preface this by stating that I drive an EV and heat my house with a ground-source heat pump.  So I’m hardly against substituting electricity for direct combustion of fossil fuels.

But the data are what they are.

Best guess is that all types of lawn-care type activities, both residential and commercial, including mowing, leaf blowing, and so on, together account for as much as 2% of U.S. gasoline consumption.  Residential (non-commercial) yard care of all sorts accounts for maybe 0.6% of U.S. gasoline consumption.

Since C02 production is directly proportional to gasoline use, that means residential lawn mowing is rounding error in terms of global warming impact.

For the average American, using an electric lawn mower in no material way offsets the global warming impact of driving an SUV, truck, or car.  Choice of car is more than 100 times as important as your choice of lawn mower.

I hope nobody is surprised by that, despite the ludicrous estimates of the environmental impact of lawn mowing that can be found on the internet.


Source:  Saint Philip Neri and the chicken, 16th century, as quoted by Pope Francis.

Study: On Twitter, false news travels faster than true stories

Massachusetts Institute of Technology, 2018

“A lie can travel half way around the world while the truth is putting on its shoes.”

Often attributed to Mark Twain, circa 1900.

Falsehood flies, and the Truth comes limping after it.

Jonathan Swift, 1710


Lawn mowers, yet again.

The point of this post is to estimate what fraction of U.S. gasoline use is attributable to lawn mowers. 

Each gallon of gas burned creates roughly the same 20 pounds or so of C02.  Therefore (ignoring NOx, nitrogen oxides), the fraction of gasoline consumption attributable to lawn-mowing will tell me the contribution that gasoline-based lawn mowing makes to global warming, relative to gasoline-driven passenger vehicles, in the U.S.

In other words, residential lawn mowing’s share of gasoline burned is lawn mower’s share of C02 released.  And that shows how U.S. gas lawn mowers (in aggregate) compare to our passenger vehicles (in aggregate), in contributing the world’s warming.

In previous posts, I showed how a modern (overhead-valve) lawn mower engine stacks up against a typical car, in terms of pollution per hour (Post #1775 and related posts).   (Pollution being defined in various traditional ways (e.g, particulates, nitrogen oxides.)  In round numbers, an hour of mowing produces roughly the same pollution as an hour of driving a typical car.  

While “pollution” as used above includes particulates and smog-forming emissions, it doesn’t include C02 at all.  Yet, while most smog-forming emissions are relatively short-lived, the increase in atmospheric C02 from fossil-fuel combustion is a nearly-permanent addition to atmospheric greenhouse gasses, in the context of a human lifespan.  (As in, like, forever — here’s a little something published in Nature Climate Change to brighten your day REFERENCE).  Most of it will still be affecting climate 300 years from now.  A good chunk of it — say a quarter — will still be warming the climate millenia from now.

(Separately, the big shocker to me was finding out that gas in gas cans is major source of pollution. Per my actual test, old plastic gas cans (“Blitz cans”) are ridiculously permeable to gasoline, and gas stored in old plastic cans is a large source of smog-forming gasoline vapor.  This, apparently, is why the California Air Resources Board (CARB) has such stringent standards for gas cans.  And why, until recently, “CARB-compliant gas can” was synonymous with “awkward to use”.)

Post #1773: Gas vs. electric mowing, part 3: Why do all gas cans suck?

For the estimate above, I did my own number-crunching, with clear documentation as to sources of data and details of calculation, because estimates on the internet are all over the map.  The plausible estimates were mostly published by state governments.  The ludicrous ones appear to come from fanatical but innumerate environmentalists.

And, of course, it’s the ludicrous ones that get recirculated the most.  You might think that’s something unique to the internet, but per the quotes above, the internet merely speeds up and amps up long-noticed aspect of human nature.  Lies are juicer than the truth, and propagate accordingly, seemingly regardless of the medium of propagation.

In any case, to validate my prior estimate (an hour of mowing is like an hour of driving), I decided to look at estimates of the fraction of U.S. gasoline consumption that goes to lawn care.

And — no big surprise — those estimates seem to have the somewhat the same bullshit nonsense level as the estimates of the pollution generated by an hour of mowing.  So I thought I’d take an hour this morning and try to separate fact from fiction, on this question.


Some calculations, and some citations, regarding the fraction of U.S. gasoline use attributable to lawn mowing.

Crude per-household use calculation, lawn mowers: 0.6%.

Source:  OFF-HIGHWAY AND PUBLIC-USE GASOLINE CONSUMPTION ESTIMATION MODELS USED IN THE FEDERAL HIGHWAY ADMINISTRATION Final Report for the 2014 Model Revisions and Recalibrations,Publication Number – FHWA-PL-17-012 June 2015

The U.S. consumes about 136 billion gallons of gasoline per year, of which 91% is for light cars and trucks (Cite:  US Energy Information Agency).

The U.S. has about 130M households (Cite: U.S. Census Bureau, via Federal Reserve Bank of St. Louis).

Ergo, by the magic of long division, average annual U.S. gasoline consumption works out to be a nice round (136B/130M =~) 1000 gallons per household.

(Separately, this squares with survey-based estimates showing about 650 gallons of gasoline consumed annually per licensed U.S. driver (CITE), and, based on harder statistics, about 230M licensed drivers (CITE).  (That is, 650 x 230M drivers /130M households =~ 1150 gallons of gas per year, per household).

I use about 2 gallons of gas per year, mowing my large suburban lawn, using a mower with a modern overhead-valve Honda engine.  I’m guessing that’s an upper bound for per-household use, as my yard is larger than average.

This suggests that gasoline use, attributable to household lawn mowing, accounts for somewhere around (2/1000 =~) 0.2% of total U.S. gasoline use. 

But, per the EPA graphic above, households only account for about a third of all gasoline use, for all types of lawn care (e.g., mowing, leaf blowing, snow blowing, and so on).  So total U.S. gasoline consumption for lawn care, of all types, by all sources, would therefore be about 0.6% of all U.S. gasoline consumption.

EPA, 2015:  2.7B gallons for all lawn care activities, residential and commercial, about 2% of total U.S. gasoline consumption. 

Separately, the same EPA source (for the graphic, above, Table 42) directly estimates 0.9B gallons of gas used for residential lawn care activities annually, and a further 1.8B used for all types of commercial lawn care, for a total of about 2.7B gallons of gasoline use for all types of lawn-care type activities.  This would therefore amount to (2.7B for lawn care/137B total =~) 2% of total U.S. gasoline consumption.

U.S. Department of Energy (2011):  Mowers alone, residential and commercial, 1%.

” Mowers consume 1.2 billion gallons of gasoline annually, about 1% of U.S. motor gasoline consumption.”

Source:  Clean Cities Guide to Alternative Fuel Commercial Lawn
Equipment, U.S. DOE, 2011.


Conclusion

Source:  RC groups.com

I’d say that’s more than enough research to get a usable answer.

Almost all gasoline in the U.S. is used for private on-road light vehicles (cars, trucks, SUVs).  Per the EPA cite above, 91% of it.

From the perspective of global warming, that’s the problem.

The amount of gas used by household lawn mowing is regrettable, but it’s rounding error in the big picture.

Buying an electric lawn mower in no way expiates the sin of driving a gas-guzzling car.  Or, really, any car, for that matter.

Keep your eye on the ball.  Despite what you may read on the internet.

Addendum:  Lawn services that do residences are classified as what, exactly?

I never did find a direct answer to this via the U.S. EPA.  By looking at the earliest versions of their work, I infer that the original split between residential and commercial yard work is by ownership of the equipment.  Initially, it was referred to as “privately owned” versus commercial equipment.

The upshot is that if a commercial service cuts somebody’s yard, the EPA likely counts that as commercial use.  So to get apples to apples, I likely need to move some part of the EPA’s commercial use back to the residential sector.  That is, if I really intend to assess the impact of mowing one’s yard / having one’s yard mown, relative to the impact of cars.

This will increase my initially-cited estimate of 0.6% of using gasoline being used for mowing. But, by how much?

Best I can tell, something like three-quarters to four-fifths of Americans mow their own lawn.  (You know what I mean: Of those who have a lawn … e.g., CITE).  But that really ought be to weighted by lawn area, as it’s almost certainly true that the larger the private lawn, the more likely it is to be cut by a professional.  I did not find that information anywhere, so …

If I stick with the lower cited number and pretend that only three-quarters of residential lawn mowing is done by individuals (that is, using privately-owned mowing equipment), because three-quarters of people with lawns mow their own,  I need to adjust the initial 0.6% upward to 0.8%. (The EPA residential sector estimate omits about a quarter of U.S. residential lawn mowing, because a quarter of private lawns are commercially mown.)

The conclusion is unchanged.  In the U.S., gasoline used in lawn care is trivial compared to the gasoline used by passenger vehicles.

Post #1986: Chevy Bolt six-month review.

 

In a nutshell:  It’s a fine car.

But if I ever run out of windshield wiper fluid, I’m going to have to buy another car.  That’s because, even with buying it used, and driving it almost daily for half a year now — I’ve never opened the hood.  Why should I?  This, by itself, sets it apart from every gas or hybrid car I’ve ever owned,

To me, the Chevy Bolt is like an electric toothbrush. It makes reassuring noises when I turn it on.  It does what its supposed to do, better than any other practical alternative.  When I’m done, I plug it in.  And the next day, it’s ready to use again.

Beyond that, I don’t give it another thought.  Which, to me, is exactly how a car should be.

It has enough range to be able to drive an hour or two out of town.  And, more importantly, drive back again.  All without having to do a fast-recharge on the road.  Which, as I have noted in earlier blog posts, is a hassle.

It’s surprisingly efficient, despite its relatively tall profile.  I get just under 5 miles / kilowatt-hour as driven, running the AC.   It seems to get roughly the same mileage city or highway.  But I’m an easy-going driver, and we have no super-speed (e.g., 80 MPH) highways around here.  (At least, not legally.)

In terms of carbon emissions per mile, it’s equivalent to a gasoline-powered vehicle getting about 155 MPG.  So it’s a real step up, in terms of efficiency, from a Prius or other efficient hybrid.  (All that is based on where I charge it (Virginia), where grid electricity is delivered at an average of about 0.65 pounds C02/KWH.)

In terms of the lifetime carbon footprint of the car, including creation, use, and recycling, it’s still carbon-sparing compared to (say) a Prius hybrid.  But the advantage isn’t as large as the fuel-only comparison above, owing to the energy-intensive nature of making lithium-ion batteries.  You spend a few years “paying back” the C02 used to make the battery.  After that, it’s all gravy.

And, FWIW, I think there’s still a lot of uncertainty over the eventual recycling of those big lithium-ion batteries when this car is eventually scrapped.  Everybody seems to think this is (eventually going to be) a non-issue, but I am not yet convinced that’s true. Sure ain’t true now, around here.

I’ve beaten that drum before, in this blog.

It’s zippy at low speed, but I now realize this is a generic fault with all direct-drive EVs.  It’s a little too torque-ey for its own good, really.  But as I now understand it (thanks to Watch Wes Work), manufacturers have to make them over-torqued, at low speed, in order for direct-drive electric cars to have adequate torque at high speed.

But if you like zipping around, a Bolt will do that, for sure.


Biggest shortcomings?

Well, it’s short.   It’s a hatchback, which I like.  But it’s about a foot and a half shorter than a Prius, bumper-to-bumper.  And the Prius is hardly a large car.

This has a few implications.  First, you are limited in what you can carry with the hatchback closed.  If I bring home eight-foot-long 2x4s from the hardware store, I have to run the up through the opening between the front seats.  That’s pretty ugly.  Second, it has a tight suspension, which I suspect is due to the high weight (4300 pounds), in a relatively small footprint.  When combined with the short bumper-to-bumper length, makes for a fairly choppy ride under the wrong road conditions.   If it were a sailboat, I’d say it hobby-horses.  That is, rocks front-to-back, excessively, on just the right kind of rough road surface.

The second consequence of that is luggage space is small with the back seats up.  By eye, I’d have been hard-pressed to take my family of four on a week’s vacation, with this car, unless we packed really lightly.  Whereas I did that with both a Prius and a Mazda 5 — not exactly large vehicles in either case — with no problems.

Overall, the ride is a bit more “jiggly” than I would prefer.

But that may be because overall, I’m a bit more “jiggly” than I would prefer.

It also has a surprisingly wide turning radius, given that it’s basically a small car.  Noticeably wider than any other cars I’ve owned recently, including a Prius.

In addition, it creeps me out when I look at my dashboard, and see that my car knows who I’ve been talking to on my phone.   Particularly because, as I understand it, Chevy retains the right to (and does) pull any and all data it wants to off my car.  Which, given that it has a built-in GPS, means not just (e.g.,) driving performance data, but location data as well.  Plus anything it can cadge off your phone.  In any case, it creeps me out so much that at I’ve taken Android Auto off my phone, and I’ve erased the Bluetooth connection between car and phone from my car’s memory.  I went so far as to buy the parts to replace the car’s phone antenna with a dummy load, but I have not gone so far as to replace it.  Among other things, it seems that Chevy’s OnStar connection has multiple antennas connected to it, and is extremely difficult to disable without disabling other, necessary functions of the vehicle.

In other words, this car connects to Skynet and you can’t effectively opt out of that.  I assume all modern cars sold in the U.S. are now about the same, in disregarding any notion of privacy.  But I’m old enough that this bothers me.

Finally, it didn’t come with either a jack or a spare tire, both of which I’ve fixed through the magic of Ebay and a couple-hundred bucks.

Beyond that, no complaints.  It gets me from A to B efficiently, safely, and comfortably.  I push the gas pedal and the car goes.  I push the brake, and it stops.  AC cools the interior well.  Heat does the reverse.  The weight makes it stable on the road.  And it feels extremely solid and safe.  No rattles.

Decent radio.

It’s all I need: An efficient urban grocery-getter.  But with the option of taking longer trips if you want, due to an EPA range of 250 miles, and a real-world range (for me) of more than 300 miles.

And it ain’t getting much better any time soon.  Assuming I understand the physics of it, it’s unlikely that electric cars are going to get more efficient than this.  The batteries may get lighter and have more capacity, but cars will still be getting 5 miles per KWH decades from now.  If cars still exist at that point.


Motivated buyer

So I took the plunge and bought one.  In January 2024 I bought a 2020 Chevy Bolt with 5,000 miles on it, for just under $19,000, all-in (including taxes, tags, fees).  (Shout out to Kingstowne Motorcars, as that was the easiest and least stressful car purchase I’ve ever had.)

My Bolt came off three years’ lease in Vermont, and was shipped to a warmer climate for resale. All the used Bolts for sale around here were, similarly, Bolts from northern states that had been shipped south for resale as used cars.

It seemed like a reasonable deal, for a low-mileage late-model used car.

But the icing on the cake is the $4000 Federal tax credit.  Uncle Sam will give me $4000 of my tax money back, because I bought this US-made EV.  Used, no less.  At least, that’s the theory.  Assuming I can keep my income low enough this year.

Net of tax credit, I will have bought a 3-year-old car with 5000 miles on it for under $15,000, all in.

Before you get bent out of shape about that tax credit, realize that Uncle Sam has been providing similar tax credits for decades now.  So if you’re angry about the current set of time-limited EV subsidies, you’re late to the party.  Uncle Sam offered a similar tax subsidy for purchasing a hybrid — back in the mid-2000’s — when hybrids were the brand-new fuel-saving technology.  The current EV (and PHEV) subsidies have Biden’s Buy-American twist to them (cars have to have adequate U.S. content to qualify), plus some fairly socialist caps on the income you can have, and still qualify for the tax credit.  But aside from those details, the current EV tax credits are just the most recent in a long line of subsidies aimed at improving U.S. transportation efficiency and reducing domestic use of fossil fuels.

Which, if you understand the long-term consequences of global warming, for the U.S. and the world, is a good thing.  Depending on how much it costs, relative to other polices to curb emissions.  This may be too little too late.  Certainly, with a Republican takeover of the Federal government shaping up for November,  it probably is too late.

Arguably, offering incentives to switch to more efficient modes of private transport is better than doing nothing.  Unarguably, it’s miles ahead of making things worse by encouraging use of fossil fuels. Which, unless I’ve missed something, seems to be all the Republicans have to offer in this area. 

Maybe I need to do a post on the big-league god-awful things that are projected to happen to the U.S.A. under unabated global warming.  This century.  In order, I’d put a) loss of the Great Plains as a crop-growing area, followed by b) loss of considerable coastal real estate, with no hope of ever again having a stable shoreline for … the next millennium or so.

Let me rank those 1 and 2, with the shutdown of the Gulf Stream (the thermohaline ocean circulation) a pretty good third.  When that happens, that ought to give the U.S. East Coast about 4′ of sea level rise in a matter of months.  That should set off a pretty spectacular scramble.

This is why I’m bothering with an EV in the first place.  The U.S. will bear high economic and human costs by the end of this century, under unabated build up of atmospheric C02.  Costs that could have been avoided by relative cheap actions taken now.  I could not, in good conscience, not avail myself of a good deal on an EV, rather than drive a hybrid.

But as a nation, seems like the Republican Party is psyched to roll back any progress we’ve made in terms of reducing fossil fuel use.  Just as they did the last time they took the White House, so that’s not a surprise.  The upshot is that instead of doing the cheap, forward-looking thing — moving to a low-carbon-emissions economy, and throw our weight around internationally to see that others do the same — looks like we’re just going to let our descendants pay for it.  And hope the country stays glued together without the food surpluses generated by growing crops in the U.S. Midwest.

As a geezer with some money, I’m supposed to be flying all over the world, taking ocean cruises, touring the U.S. in a motor home.  Because why not?  I’ll be dead before anything but the slightest impacts of global warming are being felt in the U.S.  A catastrophic forest fire here, maybe some Cat-5 hurricanes there.  No biggie.

But then there’s this:

The climate is a common good, belonging to all and meant for all. At the global level, it is a complex system linked to many of the essential conditions for human life. A very solid scientific consensus indicates that we are presently witnessing a disturbing warming of the climatic system. In recent decades this warming has been accompanied by a constant rise in the sea level and, it would appear, by an increase of extreme weather events, even if a scientifically determinable cause cannot be assigned to each particular phenomenon. Humanity is called to recognize the need for changes of lifestyle, production and consumption, in order to combat this warming or at least the human causes which produce or aggravate it.

Source:  The Pope.  (ENCYCLICAL LETTER LAUDATO SI’ OF THE HOLY FATHER FRANCIS ON CARE FOR OUR COMMON HOME, published May 24, 2015

I’m not sure the Catholic church is the greatest source for environmentalism, but the Pope gets global warming.  Once the interiors of the continents (ours and others) dry out and no longer reliably produce food, a whole lot of the poorest people on the planet are going to starve to death.  So he called on Catholics to give the same moral weight to stopping global warming as to, say, the banning of abortion.

As if.

On a less helpful note, did anybody ever both to check on in the coal miners that Trump said he was going to help?  That was from, what, the 2016 election cycle?

Accountability is easy enough.  Here’s coal mining employment from the St. Louis Federal Reserve Bank (FRED).

Hmm.  It’s almost as if coal mining industry employment was determined by economic trends, or something.  And any promise from a politician’s lips, to resurrect U.S. Coal, is just nonsense.  Although, to be honest, I can’t recall what policies whatsisname tried to get enacted, after he was elected, that were actually aimed at helping coal miners. I mean, they aren’t rich people.

Sure, Trump killed the Obama clean power plan, and pulled the U.S. out of the (completely voluntary, set-your-own-targets) Paris climate agreement.  That, as part of rolling back any recent progress in weaning the American economy off fossil fuels. Thus attempting to drive the U.S. economy with eyes firmly fixed on the rear-view mirror.

In any case, as you can see above, the answer to my question is no.  No, as far as the numbers go, Trump didn’t come to the aid of the coal miners.  Unsurprisingly, destroying existing policy isn’t the same as taking positive steps to improve anything.  The coal industry included.  In any case, if any actual targeted pro-coal policies were enacted during that  era, they don’t seem to have done much for the U.S. coal-industry employment.

OK, forget about coal.  Ludicrous Republican promises to revive failed and now must be forgotten.  (Failed because, among other things, natural gas is now a cheaper and more flexible fuel for electrical generation.)  Voters never seem to remember anything, anyway.  So take the place of Coal as a symbol of backward-looking policy, now it’s drill baby drill.

Luckily, this is self-limiting, in that if the world does nothing about C02 emissions, there likely won’t be anything resembling the U.S.A. a century from now.  What’s left of our current territory will resemble Australia, with settlement along the coasts, and a dry continental interior.  Except that, unlike current-day Australia, the coasts will be creeping unstoppably land-ward at an ever-accelerating rate.

(It’s not even hard to grasp why the soil in the middles of continents is predicted to dry out, as the world warms.  Take a wet sponge, sit it on a table, and it will eventually dry out.  Warm up that sponge, and it dries out faster.  For any given initial moisture level, the warmer sponge is the dryer sponge.  Now substitute “U.S. Midwest topsoil” for sponge, and you’ll get the gist of why the Great Plains are going to revert toward being the Great American Desert.  As average temperatures rise, the climate (and mean soil moisture levels) that you see in west Texas and Mexico will simply move north and become the climate of the U.S. Midwest.  Truly not rocket science.  Interestingly, the atmosphere will hold more water as it warms, and there will therefore be more precipitation on net.  But that precipitation will move northward as well, owing to expansion of the Hadley cell(s), the big chunks of global atmospheric circulation that are rooted by the rise of hot air at the equator.  Canada will remain well-watered.  The U.S., not so much.)

My only point being that people who think we can just keep on consuming fossil fuels at our current rate, and generations from now Americans will live much as we live today … that’s a fantasy.

We can clean up our own mess, at modest cost, or our descendants will live with some extremely expensive consequences.  That’s the reality of it.  And that’s exactly how I see the whole issue of C02-driven global warming.  We now know that C02 emissions are making a mess of the Earth.  It’s just a case of being willing to clean up you own mess, like an adult, rather than leave your mess for others to clean up, like a child.

So that’s why I bought a Bolt.  It’s not a lefty-liberal thing to do.  It’s the efficient thing to do.  It makes less mess than a gas-powered car.  So, in the end, I’m just trying to act like an adult, socially speaking.

End of rant.


Conclusion.

As I was driving my car, it occurred to me that, per mile, my car produces about one-tenth of the C02 per mile that my father’s cars did. (He was partial to V8 Ford products, and drove Mercuries for most of my childhood.)  Fifteen MPG isn’t a bad guess for a late-1960s V8 sedan.  Versus over 150 MPG-equivalent, for this vehicle.

That’s the sort of carbon-efficiency improvement we now need, across-the-board, to get the current runaway atmospheric C02 level under control. 

So in the end, it doesn’t really much matter whether or not the Bolt is the car of my dreams.  It’s the car that fit my needs to a T.  The fact that I like driving it, and that it was about as cheap as any low-mileage used car, those are just a bonus.  It was a no-brainer to go with an efficient small EV.

If nothing else, cars last a long time.  The purchase decision you make today means that the world is gifted with that car for its full usable service life.  Given the high quality of modern vehicles, that can easily be two decade.  I sincerely hope that 20 years from now, gas-powered cars are viewed as ridiculously old-fashioned.  And not in a good way.  Whereas I’m pretty sure that if this Bolt is still running at that point, it’ll fit right in with the then-current U.S. car fleet.  Assuming the U.S. car fleet still exists.

The other day, almost unprompted, my next-door-neighbor (who is also an economist) said something like “capitalism will survive, even if the U.S. doesn’t”.

So I’m not the only one having thoughts like that these days.

I can’t solve this problem, but at least I can make some minimal effort to avoid contributing to it more than necessary.

Hence, an EV was the only realistic choice for me.  It’s just gravy that the Bolt is working out so well.

YMMV.

Post #1979: Catching up with a few things.

 

Day trips:  Great Falls, Maryland and Sky Meadows, VA.

Sky Meadows is one of our under-appreciated Virginia State Parks.  The main hike at Sky Meadows (above) is a seemingly-easy half-mile walk up a hillside meadow with nice views.  It’s only a half-mile to the top, but that’s at a constant 18% grade. 

We (pant) took many (pant) pauses to (pant) admire the view.  On a clear day (e.g., without forest fire smoke), you can see the tall buildings at Reston, VA, roughly 50 miles away.


Roses are red, boysenberries are purple.

My little patch of berries is doing well.  Black raspberries have peaked.  Blackberries (above) are doing OK.  Currants and gooseberries are about done.  Wineberries are still to come.

My boysenberries are now ripening.  Three years ago I put in a few boysenberry plants.  I did this for the novelty, as I can’t recall ever having seen boysenberries for sale in this area (Virginia).  Now, having grown some, I understand why.  Technically, they are cane fruits.  In some climates, they may in fact produce stout canes.  But in my yard, they are low, creeping, sprawling plants.  They are hard to grow, in that it’s all-but-impossible to weed around them.  They’re a pain to pick, as the berries are borne just a few inches off the ground.

A ripe boysenberry looks like a purple blackberry, as shown above.   When less than totally and fully ripe, boysenberries and blackberries taste about the same to me.  But fully ripe, each berry yields a few seconds of its own distinct flavor.  Boysenberries are different from blackberries, but I would not say that a fully-ripe boysenberry is better than a fully-ripe blackberry.  And blackberries are vastly easier to grow, in my climate.

In both cases, once the fruit is fully ripe, it’s very soft and won’t travel.  Near as I can tell, the only way to taste a fully-ripe blackberry is to grow it.  And around here, the only way to taste a fresh boysenberry, at all, is to grow it.


Bike rehab success.

I must have made the right choices in rehabbing my wife’s BikeE recumbent bike (Post #1978 and earlier).  This, because she was gadding about town, on that bike, for a couple of hours today.  There’s the bike, on the W&OD trail this morning.

My sole useful advice was to mind her coccyx, in the sense that a long bike ride on a recumbent can leave you with a sore butt, particularly if you haven’t done any riding in a while.

This bike rehab project remains unfinished.  I managed to get the bike into ride-able condition, but I have been unable to get the three-speed rear hub and other bearings serviced.  My local bike shop took on the task, then declined to work on the bike due to a damaged shock mount.  (Apparently my 15-year-old repair of that mount left them unimpressed.)

This is the problem with riding what is, in effect, an antique.  I need to find another bike shop in my area that can rebuild a Sachs 3×7 rear hub.  That’s a bit of a trick, given that every part for those has been out of production for a couple of decades.


Poor garlic yield

This year marks my fourth attempt at growing garlic in my back yard garden.  This year I bought seed garlic (i.e., big heads with big cloves) from a local grower, made sure the soil had adequate nutrients including sulfur, and generally I Did What They Told Me To Do.  Including planting after our nominal first frost date in the fall.

Once again, my dreams of growing garlic heads the size of my fist are unrealized.  In fact, this is shaping up to be my fourth failure at growing garlic.  As with my prior attempts, my heads of garlic are tiny.  About half of my garlic is still in the ground, but it’s clear that most or all of my garlic heads will be on order of 1.5″ diameter or so.  Almost but not quite unusable.

At this point, I’ve tried using different garlic varieties, planting times, backyard locations, and soil amendments and fertilizers.  But I always get the same result.

I suspect that I just don’t have enough sunlight to grow full-sized garlic.  My garlic bed gets about 5 hours of direct sunlight a day.  Growing guides variously recommend “at least six hours”, and in some cases, eight-to-ten hours of direct sunlight per day.  Garlic doesn’t have a whole lot of leaf area, and as a consequence, I’m guessing it really needs more direct sunlight than is available in my back yard.


Plant propagation:  Snip-and-dip success, air layering fail.

Seven weeks ago, I started to propagate some schip (skip) laurels by two methods:  Air-layering, and snip-and-dip (Post #1967).

The snip-and-dip plants are thriving, as shown above.  Seven weeks ago, these were green branch tips that I snipped off, dipped in rooting hormone, stuck in wet potting soil, then kept moist and out of direct sunlight.  These cuttings are obviously thriving.

Air layering skip laurels, by contrast, has been a total dud (above).  The internet told me I’d have a big ball of roots at the end of that cutting after just four weeks.  After four weeks, I had nothing.  After seven weeks, there are some little bumps on the bark that might, eventually, become roots.  My guess is that for a schip (skip) laurel, I’d have to tend to that air-layered branch all summer to have any hope of having a root ball form.  Snip-and-dip is a lot easier and in this case a lot more effective.


Sketchy no more.

The scene on the left is a particularly sketchy bit of sidewalk in my neighborhood, as of March 2024 (Post #1950).  The scene on the right is the same stretch of sidewalk, now.  Presumably, in the interim, the Town of Vienna Department of Public Works has been at work.

That was good to see, given that the Town, in Its infinite wisdom, has decided to tear up my street next year.  This, due to free money from Covid. 

The plan is to bury the roadside swales that have been there for half a century, widen the street, and almost manage to convert it into just another cookie-cutter suburban street.  The point of which is to provide “a sidewalk” on my street.  In this case, for reasons only apparent to DPW, the sidewalk will cross the street mid-block.  Thus, when they are done, anyone wishing to walk down my block, on the sidewalk, will be required to cross the street in front of my house.

My bet is that nobody is going to use the sidewalk beyond that ridiculous crossing.  Other than the geezers in the 100+ bed assisted living facility that the town permitted at the end of the block.

Which, although nobody will admit it, is why this one-block-long sidewalk has to cross the street mid-block.  Because it’s not for residents on the block to use, it’s for benefit of the commercial establishment at the end of the block.  (The sidewalk crosses the street in order to attach to the sidewalk directly adjacent to the assisted living facility).

But hey, if somebody else is paying for it, and you are in a use-it-or-lose-it situation, the more money it wastes, the better.

Anyway, kudos to the Town for putting the this particularly run-down bit of local sidewalk back into good repair.

I am not looking forward to next year’s makeover of my street.  But the Town owns the right-of-way, and they can do pretty much whatever they damn well please with it.  Which, apparently, is pretty much the Town’s view of the issue, as well.


Cultivating my first deadly toxic plant.

To the casual observer, that looks like a bunch of un-ripe cherry tomatoes.  Those are actually potato fruit, what you get if you allow your potatoes to flower.  These are quite toxic due to their high solanine content.

 

 

Post #1978: Bike E Rehab, part 2

In which I construct a pannier rack for the back of the bike.  Only after which did I find out that this bike is dead.  Or maybe not.


Rear pannier mount for the BikeE

My wife and I own two BikeE’s.  These are semi-recumbent bikes that were popular (ish) about 25 years ago.

As part of this rehab process (Post #1976), I removed the wire baskets from both bikes, along with their under-seat mounts.  They never worked well.  And after a couple of decades, the rust adds nothing to their charm.

To replace those, on my BikeE, I mounted a far easier-to-use (and better-looking) set of cloth panniers across the tail of the bike frame.  As shown above.  (The product can be seen at this link, from Amazon.)

I bought a similar set for my wife’s BikeE.  Sort of a get-out-of-rehab present.  (Her bike is currently at the bike shop, for an overhaul of the 3-speed rear hub and other items.)

To hang those new cloth panniers on her bike, I need a rear rack.  Which basically no longer exists, for the BikeE.  Unobtainium, or close enough to it.

So I made one, like so:

This BikeE rear rack slides onto the aluminum-extrusion frame, behind the seat, to form a 6″ x 13″ shelf.  Tightening the bolts clamps it firmly to the frame.  (For those in-the-know, I may yet have to drill a clearance hole or two for the seat-limit rivet that’s part of the frame.)

This serves as the mount for the cloth panniers.  The panniers attach to this rear rack via Velcro straps fed through the polished metal strap-eyes screwed to the corners.

To keep the panniers off the rear wheel, I wove a 48″ bungee cord (green, above) between the rear arm of the bike and the rack.  This forms an elastic “V” on both sides.  The panniers rest against, and Velcro to, this “V”, instead of rubbing the rear tire.  In addition, the panniers themselves have a stiff back, as if from a thin sheet of plywood, which helps to keep them from the back tire.

Panniers in this position can’t stably hold as much weight as panniers mounted under the front seat.  But rear-mounted panniers on this bike are adequate for (e.g.) a bag of groceries.  And that’s about all I intend to use them for.

Here’s the rack, mounted and strung with a bungee.  And then in final form, with the panniers installed.

Addendum:  Preferred bungee routing shown below left, in torquoise.  In hindsight, the bungee is more effective at keeping the panniers away from the rear wheel when it is routed as shown below.  Just drill a couple of holes in the main plate to stick the metal bungee ends into, and pass the middle of the bungee around the front of the plastic rack.

(As a reminder, in the picture below, a shock absorber allows the gray swing arm and tire to move up-and-down relative to the blue frame/white rack.  That’s why any connection between the two must be flexible, and is among the many reasons why a normal bike rear rack will not work in this situation.)

Details of construction:  I made mine out of a 1/2″ thick piece of HDPE board, only because I had that sitting around.  It’s more-or-less a half-inch thick plastic cutting board.  Plywood would probably have been lighter. 

The top board is 6″ x  13″, sized to match the particular panniers I bought, plus an inch of length for mounting the strap eyes to either end of the board. 

Beneath that to board are two “rails”, each consisting of a “clamp” and a “spacer”.  The larger piece that clamps onto the bike is 1.5″ wide, and is the full 1/2″ thickness of the material I’m using.  The smaller “spacer” piece is about 3/4″ wide, and has been thinned down to about 5/16″ thickness, so that it is exactly as thick as the lip on the aluminum bike frame.   To keep them together, the spacer has been screwed to the clamp piece in a couple of places.

To assemble, mark lines on the top that are 1.25″ away from the center of the bicycle.  Drill them out to accept your hardware (1/4-20 bolts, in my case).  Put the bolts through the top, and place that on top of the bike frame by straddling the frame with those bolts.  Center the plastic top on the bike frame and clamp it down so that it can’t move.

Remove the bolts, hold one rail under the top, tight against the aluminum frame, and clamp that rail assembly to the bike rack top.  Then drill down through the empty bolt holes, into the immobilized rail assembly.  Run the bolts through top and rail on that side, loosely put on the nuts.  Do the same for the other side.

Tighten the bolts/nuts until the bike rack is clamped firmly to the aluminum bike frame.  For final assembly, it’s probably not a bad idea to use lockwashers, Locktite, doubling up the nuts, or similar, to keep the nuts from backing off the bolts.

It works, in the sense that I clamped it to my bike frame, and I couldn’t budge it.  I’m sure it’ll be adequate to handle the stress of 20 pounds of groceries in the panniers.

Not shown:  Cut a couple of slots in the end so you can route the bungee cord efficiently, as discussed above.  Any connection between the frame and the rear swing arm has to be flexible, because the swing arm/shock move relative to the frame, as the bike goes over bumps.  Hence the bungee cord.


I would put the cart before the horse, but the horse is dead.

The irony here is that about 30 minutes after I finished the above, I got an email from my local bike shop.  Said email telling me that the bike is dead.   My wife’s BikeE has a crack in the frame, where the suspension is attached.  And because of that, my local bike shop will not do any repairs on this bike.

And yet, there has been a crack in that location for a couple of decades or so.  The metal of the shock mount failed after just a few years.  When BikeE wouldn’t do anything about it, I made my own repair with a piece of angle iron and a U-bolt.  And continued to use the bike.  This repair transmits the stress from the shock to the frame, effectively bypassing the shock mounting.

The upshot is that tomorrow, I need to clarify what the reality of the putative death of my wife’s BikeE is.

Are we talking about the failure that occurred 20 years ago,  and the fix that has held up in the interim?  Or is this some new failure that I did not notice, despite turning the bike every-which-way as I (e.g.) changed tires and brakes, and lubed cables?

Is the bike unsafe for use, in the opinion of the repair guy? 

Or is this just a liability issue, same as you hear from car repair operations on YouTube.  Simply as a matter of corporate policy, do they not work on bikes with frame damage, for fear that something will go wrong down the road, and they would be held liable.

That’s one of those questions that I’m not sure I can get a straight answer to.  If the shop is afraid of the liability of working on a bike with frame damage, then they aren’t going to take on the liability of telling me the bike is OK to use.  So I’m not sure it’s even worth asking.

Oddly, if I’d stuck to the original plan, none of this would have come up.  At first, the plan was just to bring them the rear wheel for rebuild.  (In which case, this issue would never have arisen, because they’d never see the bike frame.)  I wonder if they’ll still rebuild the wheel/hub if I ask them to, as long as I take the rear wheel off the offending frame myself?

 


Conclusion:  The second greatest waste of time in the U.S.A. …

… is doing something really well, that doesn’t need to be done at all.

In effect, I may have just made that fancy new saddle for a dead horse.

Or maybe not.  If the issue is the decades-old damage, I think we’ll keep using the bike.  If the issue is something new, then I’m not sure what happens next.

Addendum, the next day:  It’s only temporary, unless it works.  The bike mechanic did, indeed, point to the nearly-20-year-old shock mount failure as the reason the bike was un-rideable.  He either missed (or dismissed) my 20-year-old expedient repair, using a U-bolt and a chunk of angle iron to transfer force from the bottom of the shock to the frame, effectively bypassing the shock mount.  Near as I can tell, a U-bolt of that size should have a breaking load somewhere around a ton, and so is adequate to support a rider.  

In any case, my temporary repair held up through years of riding, and nothing about it has changed.  I guess I proceed by going elsewhere to get the rear hub rebuilt.  

Post #1976: Bike E Rehab

As best my wife can recall, the last time she used that bike, my young daughter rode on the back.

Said daughter is turning 24 this year.

So it’s been sitting quite a while, unused, on our screen porch.

But with a little cleanup, new rubber all around, brake pads, a little WD-40, and chucking the moldy backpacks and rusty baskets, voilà:

Not bad for a bicycle that’s more than a quarter-century old.

Still funky after all these years.


While we’re at it.

The four most expensive words in repairs.

I knew that all the rubber items on the bike had to be replaced, just to get it back on the road.

Only after I got that done did all the other problems begin to surface. Problems that I’m going to have my local bike shop (Bikes@Vienna) fix.

Why don’t I fix the rest of the problems myself?  Here’s my answer:

Source:  BikeE riders’ group on Facebook.

Among the maintenance this bike needs is to have the three-speed axle pictured above taken apart, cleaned, lubed.  And then, most importantly, not merely put back together, but put back together correctly. 

I’m not up for rebuilding that.  Among other things, that particular three-speed rear hub is more-or-less a priceless family heirloom.  The manufacturer stopped making those hubs about 20 years ago.  New parts have been unavailable for a decade and a half now.  And it’s the only hub that will work with this bicycle without significant modification to the bike’s current setup.


This bike is so old …

that it predates e-bikes, that is, bikes powered by electricity.  Which makes the brand name — BikeE — a real handicap when it comes to looking for parts on the internet.  But circa 1998 or so, when this was sold, a) internet use by the general public was just a few years old, and b) nobody could possibly have guessed that they would ever make batteries energy-dense enough to be used to power bicycles.  Let alone cars.

…  that it came with an incandescent bike headlight powered by “C” cells.  Among the stuff that got packed away with the bike was a (then) top-of-the-line CatEye bike headlight.  Back in the day, they dealt with the inefficiency of incandescent light bulbs by using big batteries.  I can’t recall the last device I bought that used anything but AA or AAA (or even smaller) cells.

… that the company that made it went bankrupt more than 20 years ago.  Once upon a time, BikeE was the largest U.S. seller of recumbent bikes (per this reference).  But they went out of business abruptly in 2002, after some product recalls.

And yet, this bike remains a good design.  The big advantage of this bike is comfort.  It’s a semi-recumbent bike.  Sitting on it is about like sitting in a well-padded office chair.  Your butt is further cushioned by an air-shock suspension.  It is about as easy on your body as bicycling gets.

And most of the wear-and-tear parts remain available.   One of the joys of working on bicycles, as opposed to appliances, is that most of the parts are standardized and still available.  Everything on the bike frame was made to be replaced.  And everything can be replaced by anyone with an average aptitude for mechanical repairs, and a few simple hand tools.


Conclusion

My wife and I have owned a pair of BikeEs for a quarter-century now.

They seemed expensive at the time, but in hindsight, they were a good investment.  Cheaper than a heart attack, for sure.  I’ve used mine regularly, barring injuries, and it’s really the only consistent source of exercise I’ve had for the past quarter-century.

My wife’s BikeE, by contrast, got mothballed somewhere around 15 years ago.  Now she has decided to start riding again, and bringing that elderly bike back to road-worthy condition wasn’t that hard at all.

Now all I have to do is (have my bike shop) catch up on 25 year’s worth of deferred maintenance.

Post #1960: The U.S. is resolving the chaos in the EV charging market. Slowly.

 

This post started off as planning for a road trip from Vienna VA to a town in rural upstate New York.  The catch being that I planned to take my Chevy Bolt EV.

If you look at the map above, it seems like it should be easy.  There appear to be EV charging stations all over my planned route.  But the more I looked at the details, the less I understood.  And the more I realized that most of those chargers pictured above are useless to me. Continue reading Post #1960: The U.S. is resolving the chaos in the EV charging market. Slowly.

Post #1951: Replacing the battery in a cheap cylindrical dashcam.

 

 

This post walks through the process of replacing the “non-replaceable” battery inside a cheap cylindrical dashcam, like the one pictured above.

It’s not hard to do.  I did two identical cameras.  The second one took about 20 minutes.  Both repairs were successful.

You don’t even have to read this post to figure it out.  You can get the gist of the steps by scrolling through the pictures below.

If I learned anything from this, it’s that if I ever buy another dashcam, I’m going to be sure it’s the type that uses a capacitor instead of a battery.

Continue reading Post #1951: Replacing the battery in a cheap cylindrical dashcam.

Post #1944: Chevy Bolt one-month review

 

  • I bought a used car.
  • And to gas, au revoir.
  • This is favored, by far,
  • By the energy czar.
  • If the range is sub-par?
  • Well, I don’t travel far.
  • Not to Ulannbataar, or far-off Zanzibar,
  • Just my local bazaar.

[Thumpity-thump.]

  • So it’s no blazing star,
  • No de-luxe Ja-gu-ar.
  • I don’t know it from NASCAR
  • Or races stock-car.
  • So it’s not caviar
  • With a Cuban cigar.
  • It is more Hershey-bar.
  • Middle-class avatar.
  • But I set a low bar.
  • Been no glitches so far.
  • And it isn’t bizarre.
  • Like some daft minicar.

[Thumpity-thump.]

  • In mood most noire?
  • Yearn for God’s abattoir?
  • Then grab hold of the busbar.
  • Forsake CPR.
  • But for now, NPR
  • And some padding lumbar
  • Will together debar
  • Good Saint Pete, registrar.

In prose

Bought a 2020 Chevy Bolt about a month ago.  Just over 5K miles on it.  Just under $19K with taxes and tags, should end up under $15K after the tax rebate.

It’s the best used car I’ve ever bought.  But — trust me on this — that isn’t saying much.

Good:

  • About 5 miles per kilowatt-hour, as driven.  Much better than EPA, and almost on a par with my wife’s 2021 Prius Prime.
  • Low C02.  Where I live (and charge), driving 150 miles in this car produces about the same amount of C02 as burning one gallon of gasoline.  I have years, paying back the C02 that went into making all those batteries.  But in terms of operating C02 emissions, that’s quite low.
  • Comfortable:  Lot of front leg room, driver position is much higher off the ground than a Prius, which makes this easy to get into and out of, and gives good visibility (for a car, that is).  The driver’s seat fits my frame (6′) well.
  • Zippy.  Very zippy when you need to zip.  Lots of acceleration off-the-line.
  • Plugs right into the wall.  Level I (120-volt) charging works just fine.  An overnight charge at 12 amps adds maybe 75 miles of range.
  • Surprisingly nice sound system.  I have what I’m pretty sure is the stock radio, and the sound quality is very good.

The neutral:

  • Came with just one fob.  That’s really an issue with buying it used.  But, it was surprisingly easy to buy and in-the-car program some new fobs.
  • No spare or jack.  But, it was easy enough to locate and buy a jack and spare that should work with this car.
  • All told, a couple-hundred bucks fixed both issues.

The not-so-good:

  • Bumpy ride.  Short wheelbase and tight suspension give it a jittery ride.  I probably wouldn’t notice it but my own suspension isn’t all that tight, so I tend to jiggle more than I like, as I drive.
  • Have to pay attention.  This car has tight, responsive steering and a somewhat wide turning circle, both of which were a surprise, given how small the car is bumper-to-bumper.  (This is a foot-and-a-half shorter than my wife’s 2021 Prius Prime, but has a wider turning radius.)  Both of these mean that you can’t just rest a couple of fingers on the steering wheel, and cruise down the road.  You actually have to grab the wheel and steer the car.

Summary

All my life, when faced with a major energy-using investment, I’ve opted for the most efficient thing I could reasonably get.  And, so far, I’ve never been sorry I did that.

This car fits that pattern.  As long as it doesn’t fail prematurely, I am more than satisfied with it.  It’s all the car I need and it’s about as C02-efficient as a car will likely ever be in my lifetime.

I don’t think I’m going to look back, a few years from now, and say “oops”.  For a used car, that’s about all I can ask for.

Plus, I can now sneer at all those old-fashioned hybrid cars on the road.