Post #887: Volkssteppe, working toward simple D-I-Y plans for a floor-to-chair aid for wheelchair users.

Warning:  This is just the background.  I don’t get around to making these until the next post on this topic, which will occur after I’ve gathered the needed materials.  To see the wood DIY version of these, look at the just-prior Post #886. 

Edit 2/24/2024:  The actual construction is shown in Post #927.  To see that properly-configured cardboard is more than strong enough for this use, see Post #891

My last post presented plans for a practical way to allow wheelchair users to transition easily from from floor to chair and vice-versa.  The key insight — from a wheelchair-using friend — was that all you need is a broad, shallow set of steps, and a couple of “push up bar” handles (like these, say).  Portable handles vastly simplify the construction, relative to a device with built-in hand-holds or railings.

My friend reports that this combination of stairs-plus-portable-handles has increased her mobility.  Which, apparently, is high praise indeed.

For many people, constructing that set of stairs may not be possible.  While the carpentry wasn’t complicated, it required space and tools adequate for cutting up a full sheet of plywood.  The final result was nice, but what good does that do you if you can’t obtain one?

Today’s post goes in the opposite direction:  Volkssteppe.  The people’s stairs.  I’m going to work out how to create the same functionality using tools and materials that almost anyone can easily obtain and use.  It may not look as nice or last as long.  But it will work just as well as the original.

In this post, I use this as an opportunity to present some systematic analysis of this particular construction problem at hand.   I’m not actually going to produce a working set of stairs using this new approach until the next post on this topic.  The reason is that I need time to gather the materials and work out exactly what I’m going to do.


Corrugated Cardboard

After looking over the options, the obvious choice of material for this project is corrugated cardboard.

When I say “cardboard furniture”, I’m guessing that many people immediately dismiss the concept.  They’re thinking in terms of a cardboard box with a tablecloth spread over it, or some sort of spindly little table.

You might be thinking that cardboard can’t possibly be strong enough for this use, right?  If so, think again.

Virtually everything you own, short of an automobile, was packed, protected, and shipped in corrugated.  Heck, not only do we ship almost everything in corrugated boxes, Ikea is now shipping those boxes on corrugated cardboard pallets.   (That idea isn’t even original — corrugated pallets have been in use for more than two decades.)

Source:  Green Label Packaging.

My point is that if manufacturers routinely make cardboard pallets capable of supporting a ton or more, you can probably make a small set of cardboard stairs capable of supporting 300 pounds.

If you still don’t get it, just Google “corrugated cardboard furniture” and look at the examples.

Source:  Google images.

Or maybe watch this guy jumping up and down on his cardboard chair, at 3:50 into this YouTube video:

So, with a bit of planning, there’s no doubt that the average person can build a set of cardboard stairs strong enough to support an adult.

Now let me briefly list the advantages of corrugated cardboard, relative to almost any other alternative.

  • Available everywhere.
  • Cheap, typically free.
  • Easily worked with knife or shears.
  • Easily joined with common wood glue or carton-sealing tape.
  • Relatively lightweight if used well.

Too many choices for method of construction.

For these stairs, I am sticking to the basic footprint and form outlined in my just-prior post.

  • Each step will be 12″ x 30″, to accommodate both the user and the handles.
  • The top step will be 18″ above the ground.
  • A four-step staircase will be 4 feet long, with 4.5″ risers.
  • A three-step staircase will be 3 feet long, with 6″ risers.

I am also sticking to the “carcass and skin” approach of the prior model.  That is, I’m going to build an ugly, functional structure (the carcass), then add a nicer-looking surface on top of that (the skin).  This lets me be as crude as I want to make the functional parts of the structure as strong as needed.  In this case, the “skin” will be large sheets of blank cardboard, covering up the internal details of the construction.

Beyond that, there are any number of ways to build a completely functional set of steps.  There are simply too many choices. 

And there is surprisingly little systematic guidance on the engineering of cardboard structures.  For a material that is everywhere, and used for packing just about everything, I could find no systematic engineering guidelines for using it in construction.  No rules-of-thumb as to how much weight a piece of corrugated cardboard would support.  And so on.

And after examining a few boxes, I think that part of the reason is that corrugated comes in a wide range of thicknesses and weights.  There is no one standard corrugated cardboard to use as a reference.  Hence, there’s little standard guidance on using it.

That said, I’m basing everything below on a medium-sized carton from Amazon, which turned out to have walls that were 1/8″ thick, and weigh in at just about 1.6 ounces per square foot of cardboard.  Or, conveniently enough, one pound for every ten square feet.


A nosology of cardboard furniture construction

Even if I can’t find a good engineering guide, I can at least try to categorize the various techniques used to make strong cardboard furniture.

1  Simple stacked sheets.  

Source:  Homedit.com

With this method, you build a solid block of cardboard, in the desired shape, by stacking up cardboard sheets cut to shape.   For strength, the sheets would be vertical, with the corrugations (channels) running vertically.

This approach clearly could generate a set of stairs strong enough to support a person.  If in doubt, review the YouTube video cited above.

The main problem with simple stacked sheets, for this project, is the sheer amount and weight of cardboard required.  Assuming zero waste, and not accounting for the weight of any glue used, for the shallow 4-step stairs described above, if I simply made a solid set of steps, it would require:

  • 720 square feet of cardboard.
  • Equal to about 45 “medium” moving cartons.
  • Weighing about 72 pounds.

Glue could easily add another 13 pounds, even if used sparingly. 

Calculation:  Titebond is a commonly-used high-quality wood glue and would be suitable for this purpose.  Titebond says that, for wood applications, the maximum spread rate for their glue is 250 square feet per gallon.  At that rate, if you thoroughly glued this together, you’d end up using (720/250 =) almost three gallons of glue.  Titebond (same source) weighs 9 lbs/gallon, half of which is solids, so that would add maybe (3*9*0.5=) 13 pounds.

The total weight of the stairs could easily approach 100 pounds.   And, once you figure in the wastage, would easily require gathering more than 1000 square feet of cardboard, or the equivalent of 60 to 70 “medium” moving cartons.  There would also be a considerable amount of waste left over, after cutting out the required shapes.

In short, if used as a brute-force approach, it would simply be too much.  Too much material, too much weight, too much glue.

That said, one obvious alternative is to make the structure hollow.  Laminate up a series of broad “U”s.  Each broad “U”, upside-down, would be a step.  They would be laminated from strips cut from cardboard.  Would that work?

If I make each step 4.5″ thick (from tread surface to underside of tread surface), that would still use abut 450 square feet of cardboard, amounting to maybe 27 “medium” moving boxes, and weighing in at over 50 pounds.

So that’s better, and results in less waste.  But it’s still not what what I would call a sterling candidate.  The only way to reduce it further would be to make the step cross-section thinner than 4.5″.  That would certainly require experimenting to see how thin I could make it and still have it be sturdy enough to sit on.

Tentatively, I’m going to dismiss this one.  I see almost no modern commercial cardboard furniture made this way, and I think that’s probably sending a signal that this is not very practical.

2 Strength from geometry:  Folded beams and triangulated surfaces.

Source:  Time, inc.

This approach typically gets billed as “origami-like”.  That’s because, at first glance, the strength of the furniture derives from the carefully folded cardboard.

At root, this is about creating horizontal load-bearing elements that act like structural beams.  That is, single pieces of cardboard folded so that you would have to stretch or rip the cardboard along the bottom edge of the beam, in order to make the beam deflect downwards.  These constructed horizontal beams are then married to inherently strong vertical members such a thick cardboard, or thick cardboard folded into geometrically stable shapes such as triangles.

That said, the one thing I notice about most of these is that they are NOT made of recycled cardboard and NOT made out of standard 1/8″ thick carton cardboard.  Instead, all or nearly all of these origami-like pieces seem purpose-built of virgin materials, and most seem to use corrugated that is substantially thicker and stronger than what you find in garden-variety cartons.

Upon reflection, I think that goes hand-in-hand with this approach.  My guess is that if you start piecing together materials and using a variety of thin, waste cardboard, you compromise the structural integrity.

I judge that this approach, by and large, isn’t going to be practical for a set of instructions focused on using whatever-is-available scrap cardboard.  This is great for commercial product or piece of artwork, but it looks inherently risky when translated to a set of D-I-Y instructions using scrap materials.

3 Structural grid (or grid-plus-envelope) method.

The hallmark of this method is criss-crossed strips of cardboard, oriented vertically.  This comes in two varieties that look similar, but work in completely different ways.

source:  Planet Paper

The first variety is more-or-less an air-filled version of the stacked sheet method.  This translates a load vertically, to the floor, via vertical sheets of cardboard.  You can tell these by the presence of closely-spaced cardboard strips held in a vertical orientation, as in the seat portion of the chair pictured above.  Mechanically, this is really not very different from the solid stacked sheets, it just uses less cardboard, and uses the criss-cross pattern to keep the sheets in the proper orientation.

If you were then to place a sheet of cardboard over the seat of this chair, you’d have “structural grid plus envelope”, per this website.  You still have a structural grid of vertical cardboard sheets transmitting load to the ground.  they are just hidden beneath a cardboard envelope.

 

Source:  Dezeen.com, office design by Paul Coudamy

But the second variety of structural grid is a classic beam.  These elements take a downward stress, and carry that stress horizontally over to some load-bearing element.  In effect, these are horizontal elements built just like a hollow-core door:  Continuous skins on top and bottom, glued tightly to a central (mostly air-filled) core that holds those skins a fixed distance apart.

In the picture above, the horizontal bookshelves are just slabs of very thick corrugated cardboard.  The wide spacing between the top and bottom paper layers gives them enough strength to hold up the weight of the books.

So these elements work like an I-beam.  In order to flex this downward, you have to compress the top skin, stretch or break the bottom skin, or both.  The significant distance between top and bottom skins — maintained by the core — makes it quite difficult to do either.  And hence, you get reasonable load-bearing capability with relatively light weight.

I doubt that I could make a properly functioning beam of this sort from scrap cardboard.  The problem is that the two skins need to be held rigidly apart.  I doubt that I could cut scrap cardboard accurately enough to create that tight, non-moving bond between upper and lower skin.

But at this point, it seems pretty clear that the first type of structural-grid-plus-envelope — cross-crossed strips of vertically-oriented cardboard — is the most promising technique so far.  All I want to do is translate the force of someone sitting on these steps, down to the ground.  It looks like I could do that, with used cardboard, with a structural grid approach.  So that’s where I’m headed.

Post #886: A floor-to-chair/chair-to-floor aid for wheelchair users. (Picture added 11/16/2020)

This post is completely irrelevant for most readers.  If it doesn’t apply to you, just move along.  I’m posting this for a very specific target audience who would not otherwise be reading this blog.

This post is a brief description of a how to build a sturdy, cheap, relatively light-weight system to allow paraplegic wheelchair users to go from floor to chair and vice-versa, within their homes. In a nutshell, this is a set of broad, shallow, lightweight carpeted steps, coupled with a pair of standard “pushup bar” padded handles to allow the paraplegic user to mount those steps.

Making this set of steps requires power tools and a place to use them.  But the design is simple enough that any halfway competent D-I-Y carpenter can make them.

Edit:  That’s the steps and one push-bar, pictured above.  I didn’t take pictures as I made this set of steps.  So this amounts to a materials list, some crude drawings, and a set of written instructions.  And, I hope, one picture of the final product, which I will include when I can. Continue reading Post #886: A floor-to-chair/chair-to-floor aid for wheelchair users. (Picture added 11/16/2020)

Post #873: I have your voter registration data.

Source:  fandom.com

Cue the villain music.

I know whether or not you are registered to vote, and when you registered.

I know your name and address.

I know how many people in your household are registered to vote.

I know which elections you voted in.

I know your party affiliation, or at least, I know which primaries you voted in.

Separately:

I know all your phone numbers, courtesy of a cheap subscription service that provides that by name/address pair.

I know an email address for about 10% of you, based on a cheap off-the-shelf matching list, readily purchased by credit card.

I could know an email address for a lot more of you, if I were willing to shell out the money for a better list.

And I’m not kidding about any of that.

So:  Whom did I hack?  Whom did I bribe?  Can this possibly be legal?

Answers follow.

Continue reading Post #873: I have your voter registration data.

Post #815: What if this is as good as it gets?

Source:  Immunogenicity and protective efficacy of influenza vaccination
Claude Hannouna, Francoise Megas,  James Piercy,  Virus Research 103 (2004) 133–138.

The importance of this graph will be clear about five paragraphs down.

At this point, with the Phase III trials of coronavirus vaccines well underway, even if they don’t have enough “statistical power” to do the formal statistical test, our public health bureaucracy ought to have a fairly good indication of how things are shaping up.

I’ve been waiting for any US public health leader to start leaking information on the likely effectiveness of the coronavirus vaccines.   Informally tossing some numbers out there, to get us prepped for the eventual formal announcement.

We just got our first indication today.  And, although the CDC Director broke the news gently, and indirectly, and with spin, if you paid attention, the news was clearly not good. Continue reading Post #815: What if this is as good as it gets?

Post #798: Dr. Fauci and statistical power

See a caveat about the very short trials at the end of this posting.  They exaggerate exactly how short this trials could be, because this table is based on “normal approximation” to the actual probability distribution.

Yesterday, Dr. Anthony Fauci correctly stated the one and only way that vaccine clinical trials can end early.  (Assuming that that the FDA was serious when it said that any vaccine approved for US use must pass all phases of its clinical trials.)

If the results are extremely good (or extremely bad), they could legitimately end the clinical trail before it was scheduled to end.  Because, if that happens, they would legitimately and accurately be able to pass judgment on the vaccine, given the available data.  And so, if the results are extremely good, they could approve the vaccine ahead of schedule.

That’s totally legit.  And there is significant precedent for it.  Clinical trials have been stopped before, and drugs given approval, if they are shown to be clearly effective against some life-threatening disease.  In some sense, that’s every drug manufacturer’s dream.  Google the phrase drug trial end early and you’ll see an entire scholarly literature on this topic.

I’m putting a marker down, in the form of this posting, for several reasons.

  1. It was refreshing to see a US public official get the math right.  (Note that he said very good or very bad, which is the fully accurate statement.)
  2. Ditto, making a clear and unambiguous statement of fact.
  3. It will be interesting to see what actually happens, as election day approaches.
  4. I get the sense that we’re finally coming around to the Russian view of vaccine implementation (Post #773), only our bureaucracy can’t admit to that.
  5. I like math, and figured I’d use this as an opportunity to do some back-of-the-envelope statistical power calculations that I had been meaning to do anyway.

In other words, with point 5, I’d like to make some reasonable guess as to just how good the vaccine would have to be, to allow trials to end appreciably earlier than scheduled.  Just so I have some sense of whether they are making things up or not, if (when?) they cut the Moderna (US) vaccine trial short later this year.

And I’ve now done that, shown at the top of this post.  Fauci is absolutely right.  If these vaccines are effective, it won’t take very long to demonstrate that.  That’s what I find, calculating it from the ground up.

And so, if the vaccines are effective, and they cut the trials short, that’s not really a shortcut.  That’s legit.  And that’s not and excuse for not getting vaccinated.

And as an odd side note, the need for a statistical test effectively bars marginally-effective vaccines from being marketed.  (Assuming they do their statistical tests legitimately.)  If a vaccine is only 60% effective, you can eventually show that it’s “statistically significantly different” from the FDA 50% threshold.  But with any luck the pandemic will be over by the time you do that.

Details follow.


Challenge trials are the joker in the deck

You may have missed this little news item that came out a couple of weeks ago.  It said that the Federal government was brewing up batches of COVID-19 virus to use in “possible” human challenge trials.

Challenge trails:  When you absolutely, positively need to know right now.  If you’re really in a hurry to see if something works or not, you vaccinate, dose your subjects with the infectious agent, and see what happens.  You “challenge” them with heavy exposure to the disease, typically one that would otherwise guarantee infection in an un-vaccinated individual.

With that approach, there’s none of this waiting around for nature to take its course.  That’s more of a slam-bang, count the bodies and be done with it approach.  At some significant risk to the participants. (Although, the writeup above suggests that it would still take months to set up and run, which I find hard to believe if it were done on an emergency basis.)

Challenge trials are not a new idea.  They’re not even a new idea for testing COVID-19 vaccines.  Even some of Our Statesmen in Congress figured this out, months ago.

But, interestingly, Fauci appears to dismiss that possibility completely.  Meanwhile, “government scientists” (not otherwise identified in the news reporting) are creating the batches of COVID-19 that will only be needed if there are challenge trials.  I wonder which one is right.  And I wonder who the unnamed “government scientists” are.

But for now, I’m dismissing that possibility.  If they were doing to do challenge trials, they should have done them months ago.


Approximate statistical power calculation

In Post #774, I showed some of basic arithmetic that explains why it is so hard to test a COVID-19 vaccine.

  • It’s a deadly disease, so you can’t just take a few hundred people, give half a placebo, and expose them to COVID-19.  (That’s a challenge trial, as discussed above.)
  • Instead, you have to take tens of thousands of people, give half of them a placebo, and wait to see who gets infected in the normal course of business.
  • Given the low rate of new infections, it takes considerable person-months of time to accumulate enough infections to provide usable data.

I did the arithmetic in that prior post.  The US vaccine is aiming for a 30,000 person clinical trial.   For the sake of argument, let’s assume that they instantly enrolled all 30,000 people.  If they split that 50/50 (vaccine/placebo, good enough to make this point), at Virginia’s current infection rate (12 new infections per 100,000 population per day), you’d only accumulate about 50 infections per month in the placebo group. 

But that might vary quite a bit, just by chance.  Might be 20, might be 100.  And if the vaccine works, you’d accumulate fewer than 50/month, on average, for the vaccine group.  But that also would vary quite a bit, just by chance.  And then, based on the small difference between those small counts, you’d have to decide how well you think the vaccine is working.

That is why the people conducting vaccine clinical trials:

  • Chase down COVID-19 hotspots and recruit people there.  That gives them more infections per person-month of exposure.
  • Use huge samples (30,000 persons).  That gives them more stable numbers (more “statistical power”) for a given infection rate.

The final thing you need to know is that the FDA set a floor of 50% effectiveness, which they defined as either preventing infection or reducing severity of infection in half of cases.  A vaccine must be proven to do at least that well before they’ll approve it.

As an aside, that “or reducing severity of infection” may end up being weasel-wording of the highest order.  I know how to count infected versus not.  That’s black and white.  But as far as I can tell,  there’s literally no one legitimate way to calculate that second part about having reduced the severity of infection in X% of infected cases.   Manufacturers will have to establish an arbitrary scale of severity (e.g., death = 1, hospitalized on vent = 2, hospitalized no vent = 3, symptoms but not hospitalized = 4, asymptomatic case = 5).  And then perform some arithmetic on the counts of cases in each category, and from that conclude that they reduced the severity of infection in X% of cases.  Near as I can figure, that last part is going to be some form of hand-waving.  It will be some arbitrary method, applied to that arbitrary scale.  That opens the opportunities for presenting your data in the most favorable light possible.  To put it nicely.

In any event, the FDA 50% floor gives us the “target” for any statistical test.  The clinical trial is going to come up with an estimate of effectiveness, and an estimate of how uncertain your are about that number, the so-called “95% confidence interval”.  In everyday press, you’d see that expressed as a plus-or-minus range.  (E.g., the estimate is 60% effective, plus or minus 3%.  That would mean that, based on the data, you’re 95% sure it lies between 57% and 63%.  And if you repeated that clinical trial many times, only one time in 20 would you see numbers like that, but the true (real) effectiveness of the vaccine was somewhere outside of that range.)

There’s also a little statistical cheat you can try to use here, called a “one tailed test”.  It would be entirely inappropriate in this case (because a priori, you don’t know if you’re going to beat that 50% threshold or not), and I assume that legitimate scientists at FDA would not accept that.  So I’m basing this on a standard two-tailed test.

With all that, and putting aside the part about reducing severity, it’s easy enough to mock up the resulting statistical test.  To see just how much data you would need, in terms of person-days of exposure, to be able to exclude 50% effectiveness from the 95% confidence interval.  Assuming you were able to perform you test in a place with, say 20 infections / 100K persons/ day.

So that’s my rough back-of-the-envelope word problem.  Suppose you have a clinical trial with:

  • 15,000 enrolled
  • in an area with 20 infections/100K/day
  • split 50/50 into vaccine and placebo groups.  (The 50/50 split isn’t optimal, but this is just a rough calculation).

For a given true vaccine effectiveness of Y%, roughly how many days does that trial have to go on before you can exclude 50% effectiveness from the 95% confidence interval around your estimate of Y?  In other words, how long until the vaccine passes the test?

Details that nobody cares about but me:  I’m also going to use normal theory approximations here, because I know how to set up the problem in a spreadsheet that way.  I don’t think that matters, as long as I have well over 30 infections in both placebo and vaccination groups. And I’m modeling the FDA threshold as a known number, when in fact, it’s going to be half the placebo group number, which is itself uncertain.   I’m also ignoring the fact that the test is expressed as a ratio, which can complicate the statistics when both numerator and denominator are estimates (not known numbers). Finally, I’m ignoring that the trial doesn’t really start until the second month, because the US vaccine requires two doses, one month apart.

I built up this calculation using the standard formula for the variance of a binomial (yes/no) variable.  Then I use the normal approximation and, in effect, calculate a set of standard t-tests.  As mentioned above, that’s one of many things that’s not precisely correct about this calculation.  But it should be close enough.

Results are given below.  It’s no surprise that the better the vaccine, the less time it takes to prove it.  (To exclude 50% effectiveness from the 95% confidence interval).  What is surprising, to me, is how much overkill a 30,000 person trial is, if you expect the vaccine to be at all effective.  I think this may explain why other vaccines, such as the British (Jenner Institute/Astrazeneca) vaccine are using more like 10,000 in their clinical trials.

As an extras for experts, some of those very short intervals would provide too few infections to allow legitimate use of the “normal approximation” that I used here.  So those almost certainly overstate how short the trials would have to be, at the very bottom of the table.  The rule of thumb is, you’d want to see at least 30 infections in at least one of the groups.  At the placebo rate, then, that sets a floor of about three weeks to satisfy that additional constraint.  But the gist of this is still correct.  You only need a half-year of clinical trials if your vaccine doesn’t do much.

Post #792: Mask use and asymptomatic cases

I just stumbled across this article (or, same thing, here) and thought it was well worth repeating.  If for no other reason that a) it’s about COVID-19, b) it’s incredibly logical and fact-based, and c) it explains something fairly important.

The gist of this is that:

  1. When you are exposed to COVID-19, the amount of COVID-19 that you breathe in is a strong determinant of how sick you’ll get.  The higher the initial dose, all things equal, the sicker you’ll get.  The lower the dose, the less sick.
  2. Masks greatly reduce the amount of virus you inhale, when you are exposed.
  3. The least sick you can get is an “asymptomatic case”, that is, a person who was infected but fought back the virus without having any symptoms.
  4. A high rate of mask use greatly increases the fraction of infections that are asymptomatic infections.

Continue reading Post #792: Mask use and asymptomatic cases

Post #790: Cigarette smoke does not work as a test for mask filtration ability

Way back in Post #750, 7/9/2020, I had the notion to use cigarette smoke to test the ability of masks to filter out aerosol-sized particles.  There is a need for some sort of home test, because it’s next-to-impossible to tell how well or poorly any off-the-shelf mask works.  That’s particularly true for the “KN95” masks now being sold in everywhere (Post #747).

The theory seemed sound.  Cigarette smoke particles are about the right size, and in the past, some people did in fact use N95 masks to try to avoid second-hand smoke.

Now, having executed this test on my back porch this afternoon, I can attest that it doesn’t work at all. I can smell cigarette smoke strongly right through a genuine (but quite old) 3M N95 respirator (upper left, above).  And I could not tell that the smell of smoke was any stronger when I used a worn-out 3M N95 dust mask (next), or a dust/surgical mask (blue) with no aerosol filtration capability. Continue reading Post #790: Cigarette smoke does not work as a test for mask filtration ability

Post #G24: Paw paw neurotoxicity.

Paw paws.  Source:  My yard.  Destination:  Recycle bin.

We have a couple of paw paw trees in our yard.  The are nice-looking trees, with large glossy green leaves.  I have the vague recollection that we put them in for butterfly habitat, as they are critical for the reproduction of the zebra swallowtail.

We rarely get any edible fruit from them, as the fruit always seem to go from rock hard to “the deer got them” in a matter of days.

And, as it turns out, that may have been a lucky break. Continue reading Post #G24: Paw paw neurotoxicity.

Post #750: Science alert: Proposed cigarette smoke test of “KN95” and other masks

Edit:  This did not work at all.  Not even a little bit.  See Post #790 for details.

In this post, I propose to rate masks on their ability to filter out cigarette smoke.  The particles in cigarette smoke are roughly the same size as virus/aerosol particles.  (Although their chemistry is quite different.)  I am going to use those second-hand smoke particles as my best proxy for human aerosol emissions. The basic idea being that if a particle-filtering mask is good at removing something as small as cigarette smoke particles, it probably does a pretty good job at filtering aerosols in general.

I’m announcing the full scope of the test ahead of time because that’s good science.  This way, I can’t just bury the results if they turn out unfavorable.  (AKA, toss them in the circular file.)  In some sense, it’s as important to know this doesn’t work, as it is to know that it does work, as a way to test masks.

The test is pretty straightforward:  Light a cigarette, hold it under your face, and rate how strongly you can smell cigarette smoke while breathing through the mask.  Less is better.

A cigarette is ideal for several reasons.  One, it provides a consistent burn, meaning, a consistent concentration of smoke particles from one mask to the next.  Two, it’s a readily-available and easily-repeatable standard.  Three, the smoke has been well-characterized.  Four, there is no risk (as with incense) that the material has been doused with molecules meant to volatilize as the base product is burned.  If you smell tobacco smoke, you are smelling smoke particles.  if you smell incense, it’s not clear what you are smelling.

I’m going to start with these five scenarios, hoping to establish some sort of scale:

  1. 3M N95 respirator (new old stock, should be true N95 filtration)
  2. Dust mask with two layers of Filtrete 1900 fabric (~ N85)
  3. Dust Mask with one layer of Filtrete 1900 fabric (~N60)
  4. Plain dust/surgical mask (N low).
  5. No mask (N00)

The first problem is, I still have to manufacture items 2 and 3.  I did a bunch of #3 masks for friends, early in on this pandemic.  I need to make some more, document that, and then go on to make #2 masks.  These should provide known filtration standards below N95.

Then I’ll rate the following six masks on that scale.  These are the masks whose performance I am trying to judge.  Starting with the beat-to-heck 3M dust mask that I have been wearing since the start of the pandemic, that I hope is still working well.  And then some other alternatives that are readily available to the US public.

  1. 3M N95 dust mask (extremely well-used)
  2. “KN95” mask #1, from Twins Ace Hardware in Fairfax
  3. “KN95” Mask  #2, from Twins Ace Hardware in Fairfax
  4. Generic single-use “surgical-style” mask #1.
  5. Generic single-use “surgical-style” mask #2.
  6. Plain-vanilla single layer cloth mask.

The point is to say whether or not you would materially improve your protection from aerosol-sized particles by swapping a plain-vanilla cloth mask for a typical  generic, non-certified “KN95” mask offered as an impulse item at our local Ace Hardware. Continue reading Post #750: Science alert: Proposed cigarette smoke test of “KN95” and other masks

Post #747: Can Kents clarify KN95 chaos? Updated

Source:  Depositphotos.com

Update 2:  This didn’t work, at all.  Not even a little bit.  See Post #790 for details.  You can’t use the odor of cigarette smoke to test mask filtration.

Update:  See postscript at bottom.  The ability of genuine N95 masks to filter smoke particles is well known and well documented.  In that light, my proposed “sniff test” for KN95 masks looks fairly promising.  To the extent that a mask reduces the odor of cigarette smoke, then it is filtering out virus-sized particles.

In Post #740, I noted that my local convenience store had “KN95” masks for sale.    I’ve heard a rumor that one of the local hardware stores is also selling such masks.  (I plan to check that out soon.)  And I exchanged emails with  neighbor who is in the process of purchasing some KN95s, from a couple of different sources, for daily wear at work.

In theory, wearing a KN95 gives you the same protection as an N95 respirator.  So, in theory, upgrading from a cloth mask or similar to a KN95 is a smart thing to do.

In practice, not so fast.  I’ve started looking into the “KN95” mask market, and it is complete chaos.  I guess that’s no surprise.  That’s more-or-less of a piece with the entire Federal response to COVID-19. Continue reading Post #747: Can Kents clarify KN95 chaos? Updated